The story of glatiramer acetate (Copaxone) in the treatment of multiple sclerosis - The potential for neuroprotection by immunomodulatory treatment
Joint Event on 17th International Conference on Pharmaceutical Microbiology and Biotechnology & 23rd Edition of International Conference on Immunology and Infectious Diseases
April 29-30, 2019 London, UK

Rina Aharoni

The Weizmann Institute of Science, Israel

Posters & Accepted Abstracts: Clin Microbiol

Abstract:

Multiple sclerosis (MS) is currently recognized as complex diseases in which inflammatory autoimmune reactivity in the central nervous system (CNS) results in demyelination, axonal and neuronal pathology. Treatment strategies thus aim to reduce the detrimental inflammation and induce neuroprotective repair processes. The synthetic copolymer Copaxone (glatiramer acetate, GA), an approved drug for the treatment of MS, is the first and so far the only therapeutic agent to have a copolymer as its active ingredient. Using the animal model of MS - experimental autoimmune encephalomyelitis (EAE), the mechanism of action of GA was elucidated. These studies indicated that GA treatment generates immunomodulatory shift from the inflammatory towards the anti-inflammatory pathways, such as Th2-cells that cross the blood brain barrier (BBB) and secrete in situ antiinflammatory cytokines, as well as T-regulatory cells (Tregs) that suppress the disease. The consequences of GA treatment on the CNS injury inflicted by the disease were studied using immunohistochemistry, electron microscopy, and magnetic resonance imaging. These analyses revealed reduced demyelination and neuro-axonal damages, as well as neuroprotective repair processes such as neurotrophic factors secretion, remyelination and neurogenesis. These combined findings indicate that immunomodulatory treatment can counteract the neurodegenerative disease course, supporting linkage between immunomodulation, neuroprotection and therapeutic activity in the CNS.

Biography :

E-mail: rina.aharoni@weizmann.ac.il