Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Stability modeling to predict vaccine shelf-life and evaluate impact of temperature excursions from the cold chain
16th Euro Global Summit and Expo on Vaccines & Vaccination
June 19-21, 2017 Paris, France

Didier Clenet

Sanofi-Pasteur, France

Scientific Tracks Abstracts: J Vaccines Vaccin

Abstract:

The stability of vaccines is of great interest industries and government institutions. Accelerated stability studies are designed to determine the rate of vaccine degradation over time as a result of exposure to temperatures higher than those recommended for product storage. However, commonly applied stability predictions based on application of zero- or first-order kinetics are very often too simplified for description of the degradation of biological products, which frequently undergo complex and multistep degradation reactions. We used an advanced kinetic approach mixing with statistical analysis to fit the forced degradation ELISA data by computed kinetic parameters, and finally, to predict valuable the long term stability of vaccine containing several serotypes in a freeze-dried form. The modeling approach is based on the selection of the most appropriate kinetic equations which fit the degradation rate of compounds subjected to elevated temperatures, accelerating the rate of the reaction. According to six months data obtained at elevated storage temperatures, ??two-step? models were identified to conveniently describe antigenicity of serotypes. We have predicted two years antigenicity, in agreement with real long term stability data. The stability modeling procedure was also successfully applied for the prediction of antigenicity during several temperature excursions, thereby demonstrating the accuracy of the kinetic models. To the best of our knowledge, this is the first procedure mixing a global kinetic approach and modern statistical analyses to accurately determine a vaccine degradation rate able to predict shelf-life of bio-products stored in refrigerated condition and suffered temperature excursions from the ??cold chain?..

Biography :

Didier Clenet started working in the R&D Department of Formulation and Stability Platform of Sanofi-Pasteur in 2011. His work focuses on high throughput screening formulations, stability prediction using advanced kinetics, vaccine activity - structure relationship, particulate matter in vaccines and adjuvants process optimization and physic-chemical characterization. For more than 15 years in Sanofi R&D, he has worked on physical and biophysical characterization of active ingredients, freeze-dried products and monoclonal antibodies. He has developed novel X-ray diffraction and thermal analysis tools to study polymorphism and amorphous state in solid materials. His research interests are structural characterization and aggregation state determination using a variety of biophysical techniques (light scattering, flow-imaging, DSC and thermo-kinetics, fluorescence and infra-red spectroscopy, etc.).

Email: Didier.Clenet@Sanofi.com