Bassam Al Meslmani
Philipps University Marburg, Germany
Posters & Accepted Abstracts: J Bioequiv Availab
Multifunctional network-structured polymeric coat for woven and knitted forms of crimped polyethylene terephthalate PET graft was developed to limit graft-associated infections. A newly synthesized antibacterial sulfadimethoxine polyhexylene adipate-bmethoxy polyethylene oxide (SD-PHA-b-MPEO) di-block copolymer was employed. Our figures of merit revealed that the formed coat showed a porous topographic architecture which manifested paramount properties, mostly bacterial anti-adhesion efficiency and biocompatibility with host cells. Compared to untreated grafts, the coat presented marked reduction of adhered Gram-positive Staphylococcus epidermidis previously isolated from a patientâ??s vein catheter by 2.6 and 2.3 folds for woven and knitted grafts, respectively. Similarly, bacterial anti-adhesion effect was observed for Staphylococcus aureus by 2.3 and 2.4 folds, and by 2.9 and 2.7 folds for Gram-negative Escherichia coli for woven and knitted grafts, respectively. Additionally, adhesion and growth characteristics of L929 cells on the modified grafts revealed no significant effect on the biocompatibility. In conclusion, coating of PET with (SDPHA- b-MPEO) is a versatile approach offers the desired bacterial anti-adhesion effect and host biocompatibility.
Email: almeslmanib@yahoo.com