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Abstract

in a transient state are also included.

In this article, the problem of two parallel cracks in arbitrary positions of a functionally graded piezoelectric material
(FGPM) strip is analyzed under transient thermal loading conditions. It is assumed that the thermoelectroelastic
properties of the strip vary continuously along the thickness of the strip, and that the crack faces are supposed to be
insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and
electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations
are solved numerically, and a numerical method is then employed to obtain the time dependent solutions by way of
a Laplace inversion technique. The intensity factors versus time for various geometric and material parameters are
calculated and presented in graphical forms. Temperature change, the stress and electric displacement distributions
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Functionally graded piezoelectric material; Arbitrary positions; Two
parallel cracks; Integral transform; Transient response

Introduction

Piezoelectric materials widely have been used as sensors and
actuators in smart or intelligent systems to sense thermally induced
distortions and to adjust for adverse thermomechanical conditions
[1,2]. The requirements of structural strength, reliability and lifetime
of these structures call for a better understanding of the mechanics of
fracture in piezoelectric materials under thermal loading.

Recently, functionally graded piezoelectric materials (FGPMs)
have been developed to improve their reliability [3], and the
electromechanical fracture of the FGPM under mechanical and
electrical loadings has received much attention [4-6]. Thus, it is also
important to investigate the fracture behavior of FGPMs under thermal
load, and some interesting results have been reported [7-12].

While the fact that piezoelectric materials involve multiple cracks,
most of the existing contributions are concerned with the fracture
behavior of a single crack. Then some thermal fracture problems of
homogeneous piezoelectric strips with two dimensional cracks, such as
two coplanar cracks [13], two parallel cracks [14], parallel multi cracks
[15] and a T-shaped crack [16], have been treated. Moreover, the over
shooting phenomenon of intensity factors is observed in a piezoelectric
plate under the thermal shock loading [17,18]. So, in this type of
research, it is important to investigate the transient thermal fracture
behavior of piezoelectric materials with multiple cracks. Although the
present authors investigated the thermoelectromechanical interaction
between two parallel axisymmetric cracks in an FGMP strip [19,20],
one of the remaining problems that need to be fully understood is that
of interaction between cracks in arbitrary positions of FGPMs under
thermal shock loading.

In this study, the problem of two parallel cracks in arbitrary
positions in a plate of an FGPM strip is analyzed under transient
thermal loading conditions. It is assumed that the thermoelectroelastic
properties of the strip vary continuously along the thickness of the
strip, and that the crack faces are supposed to be insulated thermally
and electrically [5,9]. By using both the Laplace and Fourier transform

techniques [21,22], the thermal and electromechanical problems are
reduced to two systems of singular integral equations. The singular
integral equations are solved numerically [23], and a numerical method
is employed to obtain time-dependent solutions by way of a Laplace
inversion technique [24]. The intensity factors versus time for various
geometric and material parameters are calculated.

Formulation of the Problem

Consider an infinite FGPM strip of thickness i = h + h, containing
two parallel through cracks of different length 2C, (k = 1, 2) being
spaced at distances 2d in the x-direction and 2h, in the Z -direction
as shown in Figure 1. The rectangular coordinates x, y and z are

-h, | T,

Figure 1: Geometry of the crack problem in a functionally graded piezoelectric
strip.
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coincident with the principal axes of the material. The piezoelectric
strip is poled in the z-direction and is in the plane strain conditions
perpendicular to the y -axis. It is assumed that initially the medium is
at the uniform temperature T and is suddenly subjected to a uniform
temperature rise T, H(f) along the boundary Z = h , where H(#) is the
Heaviside step function and ¢ denotes time. The temperature along the
boundary Z = -h, is maintained at T,. The crack faces remain thermally
and electrically insulated [5,9]. In the following, the subscripts x, y, z
will be used to refer to the direction of coordinates.

The material properties, such as the elastic stiffness constants C,,,
the piezoelectric constants e,, the dielectric constants ¢,, the stress-
temperature coefficients )\kk, the coeflicients of heat conduction, K, K,
and the pyroelectric constant P_ are one-dimensionally dependent as

(Cus€u>€u) = (Cugs€uo» o) eXP(B2)
(A P.) = (A5 o) eXpl(B + @)z] @
(k. x,)=(K,4,K,)exp(0z)
where f3, w and §, are positive or negative constants, and the subscript
0 indicates the properties at the plane Z = 0. For some materials, the

thermal diffusivity A, indeed doesn’t vary dramatically, and then A, is
assumed to be a constant.

The constitutive equations for the electroelastic fields are,

uxi auzi a¢l
Oni =6 +cp 2 +e3]g_ﬂ’|]];
0. =0 s + Gy O ey %, - ATy (i=0,1,2) @
X 0. oz
Ou, Ou, og,
Oy =Cy| -+ |+es—
’ oz ox ox

where T.=T, (x,z,t) is the temperature, 9, =9, (x,2,t) is the electric

potential, u,=u, ), u,= uzi(x,z, 1), are the displacement components,

xi “zxi

0.=0., (x%,2,1), 0= aw_(x,z,t), =0, (x,2,t) (i = 0,1, 2) are the stress

components. The subscript i = 0,1,2 denotes the thermoelectroelastic
fields in -h <Z <h, h <Z <h -h,<Z <-h respectively. For the electric
field, the constitutive relations are

ou. ou. 00,

D :e”( > +T;j_€“ ail
(i=0,1,2) (3)
ou, du,, ¢,
e. — 533

Oz 0z

+p.T

Where D= D_ (xzt), D,= D ,(xzt) (i = 0,1,2) are the electric
displacement components.

The temperature is assumed to satisfy the Fourier heat conduction
equations:

, 0T o°T

i i

oT. 1 oT.
w0 T

oz A ot

(i=0,1,2) )

where k*_k /.. The equations of equilibrium and electrostatics are,

~2 2

.
o Tt Tty o Oy O
110 440 130 440 310 150

ox? oz* 0x0z 0x0z

ou, Ou, 0 orT,
+ﬂ|:c44u [7“ + T’) +éis %ﬁli| = EXP(’UZ)?X'

0z  Ox oz
cm—'+cm%+(c +c )%4—@%4—@ 4,
ox’ B0 oz? BT e et 0 et
+ﬁ(cwso % + Gy a,lf“ + e %) = Ao CXP(QZ)[aT' +(B+ W)T,'}
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o’u, ou, u 0’4, o,

50— + 550+ (€50 + €500) = — &5 — €330 ——5
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i=012) (5)

Ou ou,, 0 oT;
+ﬂ[6310 Tx" + e (’}722’ ~ &30 f) =P exp(wz)[aizl +(B+ w)T,:|

The initial and boundary conditions for the temperature field can
be written as

T(x,z,0)=T, (=0,12) (6)
0T, (x,6,,1) _
B — 0 (a,<x<b) (i=12) @
T,(x,0,,t) =T,(x,6,,,t) (-o<x<a,b <x<w)

0T, (x,6,,,t) _ 0T,(x,6,,,t) (o0 < x <)
oz oz

Z(x,ﬁ,,,t):{T'+§H(f) ((:;))

(i=12) (8)
} (-0 < x <o)

If the electrically impermeable boundary is chosen as an idealized
crack face electric boundary condition [9,25], the boundary conditions
of this problem can be written as

0.o(%,6,,1)=0
u,,(x,6,,t) =u_(x,6,,,1t)

(a,<x<b)

} i=12) (9)

(-0 <x<a,b <x <o)

O.0(%,05,) =0
u o (x,6,,t)=u,(x,6,.t) (—o<x=<a,b <x<ow)

(a,<x<b,)

} (i=1,2) (10)

D_,(x,6,,,t)=0 (a,<x<b)

} (i=12) (1)
&, (x,6,,,1) = ¢,(x,6,,,t) (—o<x<a,b <x<oo)

0,.0(x,0,,t)=0,,(x,6,,t) (—0<x<o0)

0.0(%,6,,0) =0, (x,6,,,1) (-o<x<0)r (i=12) (12)
D, (x,0,,,t) = D_(x,0,,t) (-0 <x<o0)

0..(x6,,0)=0 (—0o<x<o0)

0., (0,0,,)=0 (~o<x<wm)f (i=12) (13)

D_(x,6,,t)=0 (~0<x<o)

In Egs. (7)-(13), 0

> YVop

9“, a, and bi(i =1,2) are given by

(hyohyd —c,,d +¢) (i—l)} (14)

(90:" ‘911" ai’bi) = .
(=hy,—hy,—d —c,,—d +c,) (i=2)

Temperature Field

For the problem considered here, it is convenient to represent the
temperature T, (%2t) (i =0,1,2) as the sum of the uniform temperature
T, and two functions.

T(xz0)=T,+ TN+ TP (nz0) (i=0,12) (15)

where the non-disturbed temperature TW= TW(zt) satisfies the
following equation accompanied by initial and boundary conditions:
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20(1) 1) M
T, T _1ar (16)
oz & A o
70(z,0)=0 (17)
T (1) =T,H(t) (18)
T (~hy,0)=0

and the disturbed temperatures T?=
to the relations:

T® (x,2,t) (i = 0,1,2) are subjected

2m(2) 2(2) 2 @
Kzaﬂz +87;2 +587; :L(?Y; (i=0,1,2) (19)
o oz oz ]’0 ot
T (620)=0 (1=0,1.2) 20
AL (5,0,1) _ AT (Gyut)
o ps (@ <x<h) (i=12) @D
T (6,0s) = T (x,0,,8)  (—0<x<a,h, <x<o0)
AL (x,6,,1) _ 0T (x,6,,,0)
it _ i —00 < X < 00
o = sy @
(2)(x wt)zo (—oo<x<00)

Define a Laplace transform pair by
@) =[ f@yexp(=ptydt, f(t)= %jﬁ 1" (p)exp(ptydp (23)
i IBr

where Br denotes the Bromwich path in pertinent complex planes, and
applying the Laplace transform, it is easy to find from Eqgs. (16)-(18)
that

(* — T;) — — _ —
™ (z,p)= = o2 {explas, (b — 2)] = exp[~2poh + s, (h ~ 2)]} (24)
with
1/2
52
n (25)
) o

H :E"'ﬂo’ H, :E_/uo

In the following, the superscript * is used to refer to the physical
quantities in the Laplace transform plane.

The general solutions of the governing Eq. (19) can be obtained by
using the Laplace-Fourier integral transform techniques [21]:

2 o0
TP (x,z, p):zizj D, (s, p)exp(| s | r,z)exp(—isx)ds (i =0,1,2) (26)
V/reriand

In the above expressions, Dl.j(s,p)(i =0,1,2, j = 1,2) are unknown
functions to be solved and

T, T, (s,p) (i=0,1,2,j = 1,2) are defined as

_T_i 7,(8,p)=7———
21s|” " P 21s|

. vz (=012 @7
r=1(s,p) = K+ g + p
Srep 2|s]| AS°

The problem may be reduced to a system of singular integral
equations by defining the following new unknown functions G, (x,p)
(k=1,2) [22]:

Til(ssp) =

Orror o
Gko(x,p)—{ax[r“ s ) =T 05 0] (a"<x<b‘)} (k=12) (28)
0

(o <x<a,b <x<w)

Making use of the first boundary conditions (21) with Egs. (22),
we have the following system of the singular integral equations for the
determination of the unknown functions G, (&, p)(k = 1,2):

K b
27

{1 + Mml(f,x,p)}c;m(ap)dé
E—x
[ My (&3, p)Gy (€. p)d = T(”*(ho,p) (a,<x<b) (29)

ZLJ.bl M021(§,X,p)Glo(§,P)d§
o

—I [ +M0n(§,xp>} Guy(&.p)dS =—- T(”*( ~hy,p) (a, <x<b,) (30)

In Egs. (29) and (30), the kernel functions M, , (§&x,p)(n.k = 1,2)
are given by

M, (&,x,p) = J {[ fuly *1] ’Me)‘p [7257(}’2 + hu)]}sm [5(5 - x)]ds
(‘ KTpU
Mmz(éa X, P) = _J-o Fpo {T\n exXp (ZST(JIhU)
15 exp[—s (22h, —t,hy =705, )]} sin[s(£ - x)]ds
(31)
Mo (&)= [ Lo, exp (2570,
-7, exp[—s (22hy = 7yhy — 7011y )]} sin[s(& - x)]ds
M xp)=—| {( fnf 1} P2 exp[-2st(h + m)]}sin[s@ -0)]ds
Ktp, K1,
Where
P = pi(s, p) = =1, + 1 exp[2s7(hy = hy)]
P> = Py(8,p) =17y, — T, exXp[-2s7(h, — hy)] (32)

Po = pols, p) =1—exp(-2sth)

It is noted that the kernel functions M, (.xp), M, (§x,p) are
semi-infinite integrals which have rather slow rate of convergence. To
simplify the numerical analysis, the kernels are evaluated as follows:

My (&%, p) = M (&3, p) + [ é{exp[—z\s\rm —hy) |+ exp[=2|s|z(h, +hy)]
+2 exp[fZ ‘s‘ T(h + hz)]} sin [s(f - x)]ds

.
gl
0

o [s ‘{exp[—ZM 7(h, + ho)] + exp[—z‘s‘ t(h — ho)]} sin[s(& - x)]ds

E | ) 2
p e [2| J {1+eXp( 2|s|th) - exp| 2|s|z(h, + hy) ]
,exp[*Z‘s‘T(hl - ho)}} sin[s(¢& —x)]ds (33)

Mo (&%, p) = Mo (&, p)+ [ é{exp[—z\swh, +hy) |+ exp[ =2[s| ek, ~ )]
0

+2exp[—2‘s‘ T(h + hz)]} sin[s(§ - x)]ds

+J: Kpj s| {exp [72 ‘s‘ o(h, — l”o):l —exp [*2 ‘S‘ T(h + ho)]} sin[s(& - x)]ds

2
= 1 S
-], K1p, [2 |'s J {1+exp(—2‘s‘rh) —exp[—Z‘s‘r(hl +h0)1
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—exp[ =2|s|z(h, — hy) |} sin[s(£ - x)]ds (34)

Where the kernel functions Mg;,(,x, p), My, (E,x,p) are given
in Appendix A.

The system of the singular integral equations (29) and (30) is to
be solved with the following subsidiary conditions obtained from the
second boundary conditions of Egs. (21).

[ Gule.ppas=0 (k=12 (35)

The solution procedure of the system of the singular integral
equations will be explained lately.

Once G, (§ p)(k = 1,2) are obtained from Eqs. (29), (30) and (35),
the temperature field in the Laplace transform plane can be easily
calculated as follows:

T (x,2,p) = —*z ZJ R,,k exp[s(rijz + rh,j)]ds

T j=1 k=1

xj’ Gyo(&, p)sin[s(E—x)]dE  (i=0,1,2) (36)

where the functions ng Elek (s,p) are given in Appendix B, and
constants hi]_(i =0,1,2, ,k=1,2) are

hyy =hy, ==hy,  hy=hy,=h }

hy,=-2h +hy, hy,=-2h+h, (37)

The temperature fields T"(z,t) and T?(x,z,t) (i = 0,1,2) in the time-
domain can be obtained from TW(z,p) and T®" (x,z,p)(i = 0,1,2) by use
of the numerical inversion technique of the Laplace transform [24].

Thermally Induced Singular Elastic and Electric Fields

Thenon-disturbed temperaturefield 7" (z, p) givenbyEq.(24)does
not induce the stress and electric displacement components affecting
the singular field. Thus, we consider the elastic and electric fields due
to the disturbed temperature distribution 7%"(x,z, p)(i=0,1,2) only
in this section. It is convenient to represent the solutions u),(x,z, p) ,
w'(x,z,p) and ¢ (x,z p)(i=0,1,2) in the Laplace transform plane as
the sum of two functions, respectively.

ul(x,z, p)=ul" (x,z, p) +ul" (x,2, p)
¢ (x,z,p) =" (x,2, p) + 4" (x.2, p)

(i=0,1,2) (38)

where " (x,z, p) » u(x,2,p) » ¢ (x,z, p) are the particular solutions
of Eq. (5) replaced T'(x,zp) by T®(xzp), and uS"(x,zp),
u"(x,z,p)
equations obtained by setting T'(x,z,p)=0(=0,1,2) in Eq. (5). In
the following, the superscripts (1) and (2) indicate the particular and
general solutions of Eq. (5). Substituting Eq. (38) into Egs. (2) and

¢ (x,z,p) are the general solutions of homogeneous

(3), one can obtain the stress o,(x,z,p), 6*,(x,z,p) » Ou(x,2,p) and

electric displacement D’ (x,z,p), D(x,z p) (i=0,1,2) expressions in

the Laplace transform plane.

Using the displacement potential function method and the Fourier
integral transform techniques [21], the particular and general solutions
can be obtained as follows:

ul" (x,z,p) = 2”2L Py F, (s, p)exp[h | (fyz +h, )]exp( isx)ds

s|s|

u (x, 2. p)_ Zj.i‘%p;‘”’[’"(s,p)exp[\s\(f”z+rh”)]exp(fisx)dv ( i= 0)1,2) (39)

8" (x,2, p) —7L22:J' ﬁme/(A p)expD [(fyz +7h, )Jexp( isx)ds
=l s

H 6
" 1 © .
) =3 2 [ P s p)expls 7,2 expisods

(i=0,1,2) (40)

Wz p) =5 ZJ —p:,’A,m P)exp(s|7,7) exp(—isx)ds

4 (x,2,p) = —52 [7 P24, pyexplls | 7,2) exp(—isx)ds
=

where A, (s,p) are the unknown functions to be solved. The functions
pmll)]—p“)(g p)» fy =15 p) (m=456,i =012, j = 1,2) are given in

Appendlx C,and p)=pSis), yij = yij (S) (m = 4,56,i =012, j=
2,....,6) are given in Appendix A of the previous paper [19]. The

functions F,-,- (s,p) (i=0,1,2,j=1,2) are

2 hk .
Fi(s,p)= Y Ry |, Guo(& pexplis)dé (i=0,1,2,j=1,2) (41)
k=1 ¢

Similar to the temperature analysis, the problem may be reduced to
a system of singular integral equations by defining the following new
unknown functions G,, (xp) k=1,2,m=1,2,3)[21]:

G (xp)—{a[ (.00, p) — “z;.(xgopp):l (a, <x<by)

0 (—o<x<a,b <x<o)

} (k=1,2) (42)

Or . .
Gt p)_{&[umuﬂwp)zz,k<x,90k,p>] (@, <x<b) } (k=12) (43)

0 (—o<x<a,b <x<o)

_9
Gis(x,p)=4 x
0

Making use of the first boundary conditions (9)-(11) with Egs.
(12) and (13), we have the following system of six singular integral
equations for the determination of the unknown functions G, (¢, p) (k
=1,2,m=1,2,3)

(4500 P) =4 (5.6,,p) ] (a, <x<b)

(o <x<a,b <x<w)

} (k=12) (44)

h i 1 1 o )
[ {{%Wﬁ:(é,n}q‘@, P+ MENG,(Ep) +[%+Mfu<e:,x>}6‘3<5, p>}de:

Y M EXG (G = 70T (e hep) (@ <x<b)  (45)

° om=1

(e
Z7121

N IR CRER S ER N

+ ZM“’ (£X)G,,,(E.p)dE =0T, (xhy,p) (@ <x<b) (46)

(e

(1)
[} {Lff + M;H(;x)}cl.@,p) +MIL(EDOGa(Ep) {% + M§:L<5,x>}qs<§,p>} ds

+JfZM;‘;L(ax)GM(é,p)dé D% (5 hyp) (@ <x<h) (47)

2)0

b )
I {E +MAE, X)}Gz.(éap) + ME(E DG4, p) {? +MB(E, x)}Gy(f,p)}d;*

+j Z ME\(E,%)G,,, (& p)dE = 7ol (x,~hy,p)  (a, <x<by) (48)

m=1

(2)
[ {MS:(ax)Gz. Ep+ fo +M3) (s,x)}Gn(é,p) FMEENGE, p>}d§

+[ 3 MO (E G, (& pME =707 (5~ p) (@ <x<by) (49)

=)

by (2)=
[, {{Zf+ MY r)JG (&p)+ MEEXNG,(E, p){ §§;<§.x)}cu<é,p>}d¢
@ || &-x §-x
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S MELE G (& pME=7DL (6l p) (@ <x<hy)  (50)

In the above equations, the kernel functions
MG (6,9 (nk =1,2, j,m=1,2,3) are given by
M) (&%) =
I z (230, (5)- 27 Jsin[s(Z - x)]ds  (m=1.3)
(j=13)
- Z Z9,(5) = 257 Jeos[s(£—x)]ds  (m=2) (51)
o (nk=1,2)
I~ Z [Z50,(5)- 24 Jeos[s(€-x)]ds  (m=1,3)
o (=2
I X[z -2z Jsin[s(z=0]ds  (m=2)
I=1

where the functions Z{, (s) and the constants Z§;)" (n,k,/=1,2, j,m=1,2,3)

Sl

are given in Appendix D. The functions oL,(x.%hy.p), " (x, %A, p)
and DI (x,thy,p), which correspond to the stress and electric
displacement components induced by the disturbed temperatures
T (x,z,p) (i=0,1,2) on the z = + h planes in the absence of the crack,
are obtained as follows:

oLy hy, p) = lim 2—2 [7 Is1p5)di (s, pyexp[ 517, (hy +2) Jexp(=isx)ds

+ lim —Zj || pioydy, (s, )exp| =517, (h, = 2) |exp(—isx)ds

=hy Qp

~tim s [ LA el ek, + £ 2 esptisds (52)

zothy D, i

ol (5 thy, p) = lim —ZJ sple)dy, (s, p)exp[| s |7, (hy + 2) Jexp(—isx)ds

>ty 27

+ lim —ZJ spaordy (s, p)exp[ [5170;Chy —z)]exp(—isx)ds

zothy D1
- lim 2”2 [ lp;mm p)exp[|s|(chy, + f,,2) Jexplisx)ds (53)
D7 (xthy, p) = lim —— I |51 P i, (s, pYexp( s |7, (h, +2) Jexp(~is)ds

i 277 4

+ lim —ZJ Is| piody, (v,p)expl:— 517, (hy = z):lexp(fisx)ds

zothy 1

— lim —ZI

2oty Q1

~PU (s, )exp || (Thy, + £,,2) Jexplisx)ds (54)

In Egs. (52)-(54), the functions dq;(s, p) (j =1,2,...,6) are also given
in Appendix D. Of course, these components are superficial quantities
and have no physical meaning in this analysis. However, they are
equivalent to the crack face tractions in solving the crack problem by a
proper superposition. The singular integral equations (45)-(50) are to
be solved with the following subsidiary conditions obtained from the
second boundary conditions (9)-(11).

[" G (& p)ds=0 (k=1.2.m=12.3) (55)

To solve the system of the singular integral equations (29), (30) and
(45)-(50) with the subsidiary conditions (35), (55), we introduce the
following functions @, (&, p) (k=12,m=0,1,2,3):

G, (& p)= o D, (& p) (k=1,2,m=0,123) (56)

[(a,=1ED(E1-b)T"

Using the Gauss-Jacobi integration formula [22], the functions @, (&p) (k
= 1,2, m=0,1,2,3) can be determined by solving the integral equations.

The stress intensity factors K{"(p), Kiy"(p)>» K& (p)> K& (p)

1B

and the electric displacement intensity factors K. (p), K (p) at
the crack tips x = a,,b, on the z = 0, (k = 1,2) planes in the Laplace

transform plane may be, respectively defined and evaluated as:

K:“*(p)——hm[zﬂ(ak—x)]“c*ou B> P)

=—(7¢,)' I:Zun(Du (@ p)+ Z‘“,(I)u(a‘,p):l

K" (p) == lim[27(a, = )] 07, (x. 0y, P)
o (k=12) (57)

20 ®Pia(a,, p)

Kl()k/\)* (p)= i\lriﬁ\l’?[Zﬂ(a,‘ -0 D,(x,60,,, p)

=—(7c,)"” I:Z;kll(bkl(ak’P) + Z;Ulq)k}(ak’p)}

=~(n¢,)"* 2

Ky (p) = im[27(x = b)) 02, (x, 0, P)
:(”Ck)lzI:Z:;cllq)kl(bk’p)+Z]Dleq)k3(bk’p):'

K:IIB)'(P)—hm[WT(X 51" 0" (.0, P)
=(7¢,)" 251, ® 5 (b, )

Ky (p) = lim[27e = b)) Dy (5, 6y, )

(k=12) (58)

=(mc,)"” [Z;/inq)m (bes P)+ Z535,D (bk’p):l
Thus, the stress intensity factors K'(1), K%(r), K\ (1), Kiy (1)

and the electric displacement intensity factors K3, (t), K% () (k=1,
2) in the time-domain are

, 1 » ©
K;Ak)(t) =—(7¢, )" %J‘Br [ZIAII(Dkl(ak’p) + Z,UI(I)“(aA,p)]exp(pt)dp

1
K (8)= ()"

(k=12) (59)
27[1 Br

Z3 @y, (ay, p)exp(pt)dp

K&A)(ﬂ =—(7¢, )" TzziL' I:Z;Hq)kl(ak’p) +ZJ’;}1<DU(aA,p):|exp(pt)dp

(A)(l) (7¢; )I/Zi.[ Z!k\lq)u(bk’p)+Z!Hl(bk“s(bk’p):lexp(pt)dp

KO =(20) 5=, Zin @b p)exp(p)dp (k=12) (60)

K@) =(rc)” T,,if,,, 23, @y by P) + 25, @, by p) Jexp(pi)dp

The values of them at £ — oo are given by

Ky (o) = lim K (0) = lim pKi" (p)
K (e0) = lim K30 (1) = lim K" (p) ¢ (K =1,2) (61)
K (o0) =lim K (1) =lim pK{7 (p)
Ky (o) =lim K (1) =lim pK(i” (p)

Kiy () =lim Kii) (1) =lim pK{) (p) - (k =1,2) (62)

Ki5(0) = lim K30 = tim pK) (p)

Numerical Results and Discussion

For the numerical calculations, the material is considered to be
cadmium selenide, with the following properties [2] are used properties
of the FGPM plate at the plane z = 0:
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€ = 741x10°[N/m?],
€330 =8.36x10"°[N /m’],
ey,0=-0.16[C/m’],

€5, =—0.138[C/m’]),

&9 =0.825%107°[C/ Vm],
Ayo = 0.621x10°IN / Km®],
D0 =—2.94x10"°[C/ Km’]

€y =3.93x10"[N / m?],
Chyp =1.32% 1OIO[N /m?),
ey =0.347[C / m’],

&350 =0.903x107°[C/ Vm],
Ao =0.551% 106[N /Km’],

Since the values of the coeflicients of heat conduction for cadmium
selenide could not be found in the literature, the value x? = k/ =1/15
is assumed.

To examine the effects of the crack geometry and material
parameterson K, K% (=LILD,k=12), the normalized parameters
(¢ /hcy/hhy! hh [ hh/hd/h and (Bh, 6h, wh) are used. Because
there are many geometric parameters, we focus on the influence of
the crack distance parameter d/h and the material non-homogeneity
on the fracture behavior. Thus it is supposed to be the crack location
parameters h /h = h/h = 0.5 and the crack length parameters c /h =
c,/h. And the normalized non-homogeneous parameters 8k, 6h and wh
are assumed to be fh = 6h = wh.

The electroelastic fields without cracks

Figures 2a-2c indicate the normalized stress components
(0Lo(x.Ehy,1), ol (x,%h,0)/ 2T, and  the
displacement component DI (x,%h,?)/ p.,T, on the z/h=+02 planes

normalized electric

in the strip without crack at various normalized time F=t4,/h* for
the crack distance parameter d/h = 1.5, the crack spacing parameter
hy/h = 0.2, the crack length parameter ¢, /h = ¢,/ h = 1.0 and ph =

[hy/hE0.2
hy/h=0.5
ci/h=c,/h=1.0
0.01d/h=15
o
'_
[=3
3
< o0
o
N
o)
-0.01
z/h=-0.2 z/h=0.2
,(Iow‘ercrack)‘ < ‘(uppercr"dck),

4 2 0 2 4
x/h

Figure 2a: The stress component O‘TZ0 on the z/h =+ 0.2 planes in the strip
without crack.

hy/h=0.5

.
G20 '3z To

-0.1 *(Iow‘er crack) ‘ ‘(upper cr{:\ck)*

4 2 0 2 4

Figure 2b: The stress component
without crack.

on the z/h = + 0.2 planes in the strip

x

[hy/hE0.2" | T
hy/h=0.5
0.02 [cy/h=cy/h=1.0

- 0.01

ZOT

20

o'/

& -0.01
-0.02

\ .
2h=-0.2 v 2h=0.2
(upper crgck)

[ (lower crack) | ‘

B R B 2 4

Figure 2c: The electric displacement component D!, on the z/h = + 0.2
planes in the strip without crack.

he/h=0.3
ho/h=0.5
_____ Kg(eo) Crlh=cy/h=0.5
0 1 Il
0 0.5 1 1.5
d/h

(Kia"(0), Kig)(00))/hgaoTo(mcy) "2

Figure 3a: The effects of the material non-homogeneity and the crack
distancedon the static values of the stress intensity factors K} (o) and
Kjy () .

1.0. Above mentioned before, these components are given by Egs. (52)-
(54) and are superficial quantities. The maximum values of o, (x,/,1) ,
ol (x,hy,t) and DI (x,h,,t) are seen to occur at about F = 0.5, whereas

the maximum values of 0L,(X,~hy,0) , & (x,~hy,t) and D (x,~hy,?)
occur at F->oo.

The static behavior of the stress and electric displace-
ment intensity factors

Due to above discussion, the intensity factors of the upper crack
would be larger than those of the lower crack, thus only the results
for the upper crack will be shown. Figures 3a-3c show the effects of
the material non-homogeneity fh and the crack distance d/h on
the static values of the normalized stress intensity factors (K (c0),

K{3(@0))/ Ay Ty(me)” (n =L11) and the static values of the normalized
electric displacement intensity factors (K{) (), Ka())/ p. T, (wc)"”
for fh = -1.0,0.0,1.0 with h /h = 0.3 and ¢ /h = ¢,/h = 0.5. The results
for the cases of d/h->eo and h = 0.0 coincide with the results of single
parallel crack [8] and with the results for the homogeneous case [14],
respectively. The values of the intensity factors tend to increase/
decrease at first, reach maximum/minimal values and then decrease/
increase with increasing d/h. The absolute maximum values of the
intensity factors tend to occur at about c,/h = d/h, and the interaction
between the two cracks may vanish for the range 3c,/h<d/h. Moreover,
it is evident that the intensity factors can be reduced by increasing
the material property gradient of functionally graded piezoelectric
materials.
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0.05

0.04 T

ph=1.0|

(Kua(=0), Kiig(00))hgs0 To(mey) ™

003’ /[ T T
~~~~~ VIR =0. 4
002 o) 1
N e Kig"(e0) ci/h=c,/h=0.5
0.01 =" L ‘
0 0.5 1 15
d/h

Figure 3b: The effects of the material non-homogeneity and the crack
distance d on the static values of the stress intensity factors K, () and
Kip(e0) .

0.01 T
ho/h=0.3 i
ho/h=0.5

c4/h=c,/h=0.5

-0.01
-0.02
-0.03 N\ -
-0.04 h

0 0.5 1 1.5

(Koa'™(22), Kog"(c0))/p,oTolncy) "

Figure 3c: The effects of the material non-homogeneity and the crack
distance d on the static values of the electric displacement intensity factors

K{) () and K3() .

The transient behavior of the stress and electric
displacement intensity factors

Figures 4a-4c show the effect of the crack distance d/h on
the transient behavior of the normalized stress intensity factors
(K,‘]'A’,Kj]g)/jmro(;;c)'2(77:1,11) and the normalized electric

displacement intensity factors (K$),K0)/ p.T,(zc)"* are plotted
versus F for fh = 1.0 with h/h = 0.2 and ¢ /h = ¢,/h = 1.0. In these
figures, the dashed, solid and dotted lines indicate the results for d/h =

0.5,1.0 and 3.0, respectively.

Similar to the static values of the normalized stress and electric
displacement intensity factors, the interaction between the two cracks
may vanish for 3c,/h = d/h, and the absolute values of the intensity

factors become| K} |=| K} | (;7=1I1LD). The absolute values of the

nA

intensity factors|K\.|, | K| (n=L1LD) increase at first, have the

peak values| K> | ,| K7 |(7 =1,11,D) , then decrease and approach

the static values |K;{()|, |K{(®)| (7 =LILD) with increasing F. The
value of K (d/h = 0.5) becomes negative so that the contact of the
crack faces would occur, and these results for F >1.3 have no physical
meaning. As shown in the previous paper [18], the results presented
here without considering this effect may not be exactly correct but
would be more conservative, since the contact of the crack faces will

increase the friction between the faces and make heat and electric

transfer across the crack faces easier. Thus the intensity factors would
be lowered by these two factors.

Figures 5a-5c show the effect of the material non-homogeneity
Phon (KX K/ 2 Ty(xe)* (n=111) and (KL KR/ p.T, (ze)” are

DA>

plotted versus F for d/h = 0.0 with ¢ /h = ¢,/h = 1.0. In these figures, the
solid, dotted and dashed lines indicate the results for fh = 2.0, 0.0 and
-2.0, respectively. The results for the case of Sk = 0.0 coincident with
two parallel cracks [17] and with the results for the homogeneous
case [18]. Because of symmetry, the values of K|, K\ (n=1D) for
Bh = 0.0 approach zero and the values of the intensity factors are
K9 =K$ (n=1D) and Ky} =-K) . The value of K, for h = 2.0 also
becomes negative so that the contact of the crack faces would occur.

Figures 6a-6¢ are the same as Figures 5a-5c¢ for d/h = 1.0. With

& 001

5

E

F 0.005

3

<

Em

a 0 N

X hgh=02 .

B h,/h=0.5 S~ KM

< cih=ch=10 ==K B .

Looosl o
e 0 1 2 3 4 5

Figure 4a: The effect of the crack distance d on the stress intensity factors
K and K.

1
)
o
o
=

o
o
[N}

(Kia", Kig)/az0To(meq)"

Figure 4b: The effect of the crack distance d on the stress intensity factors
K{) and K

1B *

N
e : 5
S 0.01F—idh=10 Ko __——-------- .
S L FA=30_ 77 he/h=0.2
o . hy/h=0.5
B 0 cy/h=c,/h=1.01
= Mo o 0 ,
S Ko =Kos ™ .
é -0.01 = Kog" B
S Ko |
g -0.02 DA
X

Figure 4c: The effect of the crack distance d on the electric displacement

intensity factors K} and K®.
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& 0.006
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4 L dih=0.0 -—-1Bh=-2.0
0 1 2
F

Figure 5a: The effect of the material non-homogeneity on the stress intensity
factors K,) and K, for d/h = 0.0 and gh = 2.0,0.0, -2.0.

°
=)
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o
o
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(K", Kig")/Aa30To(meq) "
o

Figure 5b: The effect of the material non-homogeneity on the stress intensity
factors K\ and K for d/h = 0.0 and ph = 2.0,0.0, -2.0

N T T
= ho/h=0.2
< 0.005—h2/h=o_5 —:Bh=2.0 ]
2 cyh=ch=1.0 = - Bh= 0.0
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Figure 5c: The effect of the material non-homogeneity on the electric
displacement intensity factors K\ and K{) d/h = 0.0 and gh =2.0,0.0, -2.0.

increasing F, the intensity factors K\, , Ky (7=1D) and K{. for fh
= -2.0 increase monotonically, and then approach static values K}, (o),
K3 (@) (n=1D) and K{(®) . On the other hand, the intensity factors

K", K% (n=11) and K7}, for fh=2.0 have clear peak values, and K

A ? 1A >

K for Bh = 0.0 have slight peak values. In addition, these peak values,

static values and the interesting values (| K{)" — K. (0) )/ | K2 (0) |,

(K7 = K5 (@) )/ | K ()] (7 = L1L,D) , which mean the overshooting

7B
effect, are presented in Tables 1-3. It is found that the peak values of the
intensity factors and the overshooting effects increase with increasing

Bh.

Conclusion

The transient mixed-mode thermoelectroelastic fracture problem
of a functionally graded piezoelectric material strip with two parallel
cracks in arbitrary positions is studied theoretically. For the special
cases of symmetrical geometry (h,/h = h,/h = 0.5 and c /h = ¢ /h), the
effects of the crack distance and material non-homogeneity on the
stress and electric displacement intensity factors are clarified. The
following facts can be found from the numerical results.

For the case of the static behavior

1. The increase of the material parameter is beneficial for reducing
the static values of the intensity factors.

2. The absolute maximum values of the intensity factors tend to
occur at about c/ h = d/h, and the interaction between the two cracks
becomes 0 at about 3¢ /h = d/h.

« 001
E 0.008
= %
80.006| [/
< o
< 0.004F
o ] ho/h=0.2
< “Z//ﬂfo'ﬁm 0
S 0.002 dneto
\xz 0 I I |
0 1 2 3

Figure 6a: The effect of the material non-homogeneity on the stress intensity
factors K} and K| for d/h = 1.0 and Bh = 2.0,0.0, -2.0.

T 0.04 | PRI I
Q Y
3 0.02

l—z A

S 0

< — = hoh=02
S Eg'ﬁ: 63 hg;rr::O'/sh 1.0 |
~ -_—— = cq1/h= =1.

2 -0.02 ph=-20 A
x \+
<7 -0.041\
S e e
N s rasaerItIoTItIiTItILS
¥ el T
0 1 2 3

Figure 6b: The effect of the material non-homogeneity on the stress intensity
factors K\, and K} for d/h = 1.0 and Bh = 2.0,0.0, -2.0.
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Figure 6¢c: The effect of the material non-homogeneity on the electric
displacement intensity factors KS/)\ and K]()Ig for d/h=1.0 and Bh=2.0,0.0, -2.0.
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Figure k

d/h

Bh

| K | _IKy ()| | K™ ~ Ky ()]
Ay Ty (7€) Ao Ty (7)) | Ky ()|
2.0 9.383 x 10 8.616 x 10 0.089
Figure 6a A 1.0 0.0 9.254 x 10° 9.239 x 10° 0.002
-2.0 8.906 x 10 8.906 x 10 0.000
2.0 7.718 x 10° 6.498 x 103 0.188
Figure 6a B 1.0 0.0 7.611 x 10° 7.547 x 10 0.008
-2.0 7.691 x 10° 7.691 x 10 0.000
Table 1: The values of | KE™ | /ATy (me))"?, | K, ()| /25, Ty(ze))" @nd (| KE™ = K, (00) )/ | K, (0) |
Figure k dh Bh eal eal
|KI';kk ‘ | Ky () | |K1];kk7Km-(°O)|
1/2
23307;, (72'01)”2 ’1’530T0 (ﬂcl) ‘ Kllk (o0) |
2.0 5.466 x 102 4.263 x 102 0.282
Figure 6b A 1.0 0.0 5.340 x 102 5.055 x 102 0.056
-2.0 5.308 x 10 5.308 x 102 0.000
2.0 4.591 x 102 2.455 x 102 0.870
Figure 6b B 1.0 0.0 4,582 x 102 3.536 x 102 0.296
-2.0 4,553 x 102 4.224 x 102 0.078
Table 2: The values of | K[ | /2,,,T; (7¢,)"?, | Ky (90) |/ ATy (€)' @A ( K5 — Koy (0) ) | Ky (0) |-
Figure k d/h h cal cal
o . K K, ()] | K™~ Ky ()|
1/2
AssoTy (7[01)”2 ATy (7e)) | Ky (0) |
2.0 2.161 x 102 2.116 x 102 0.021
Figure 6¢ A 1.0 0.0 2.116 x 102 2.116 x 102 0.000
-2.0 1.892 x 102 1.892 x 10?2 0.000
2.0 1.283 x 102 1.110 x 102 0.156
Figure 6¢ B 1.0 0.0 1.277 x 102 1.277 x 102 0.000
-2.0 1.287 x 102 1.287 x 102 0.000

Table 3: The values of | K5 |/ 23T, (¢)"?, | Ky, (00) |1 245, T (77¢,)"2 and (| KE™* — K, (00) )/ | Ky (20) ] -

For the case of the transient behavior 7.
1. The distinct overshooting phenomenon can be observed and this 8
fact may suggest the importance of these transient analyses.
2. The peak values of the intensity factors increase with increasing fh. 9.
3. The overshooting effect depends on the crack distance and

material non-homogeneity. The large fh induces the large overshooting 10

effect.
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