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Editorial

Although the vital role of water for living cells is widely accepted, 
its messenger role in cell signal transduction as well as in the generation 
of various diseases, including aging-induced increase of the risk of 
different disorders, still awaits to be elucidated. 

The classical membrane theory (the authors of which A. Hodgkin, 
A. Huxley, J.Eccles in 1963  and B.Kats in 1964 [1] received Nobel
Prize in Physiology and Medicine) considered the signal transduction
in neurons as an activation of ionic channels in membrane leading
to generation of transient ionic currents through the cell surface
membrane [1]. Although most of the fundamental predictions of this
theory were confirmed by subsequent studies in different laboratories,
in particularly by study using Patch-Clamp method for recording the
elementary electrical events of the membrane, suggested by Nobel
Prize winners Erwin Neher and Bert Sakmann [2,3], the nature of
physico-chemical mechanisms determining the Membrane Potential
(MP) dependent changes of membrane conductance, which is one of
the fundamental membrane properties postulated by this theory stays
non elucidated. From the viewpoint of these approaches, it is difficult
to explain the big number of experimental data on the effects of weak
physical and chemical signals on neuromembrane functional activity,
the intensity of which is rather far from not only the threshold of ionic
channels activation but also from thermal thresholds [4-6].

One of the omissions of membrane theory is that it did not 
consider the role of water fluxes through the membrane in ionic 
channels activation and inactivation processes, although the osmotic 
gradients on cell membrane and its membrane potential-dependent 
changes as it was postulated by Teorell [7]. It did not consider the 
variability of active membrane surface during neuronal functional 
activity, namely the MP-dependent changes of cell volume, which was 
clearly demonstrated by Isawa et al. [8] in squid axon. These authors 
have shown that during single Action Potential (AP) the membrane 
depolarization causes axon swelling, while its hyper polarization leads 
to axon shrinkage. Later by our work was shown that water fluxes 
through membrane of squid axon and snail neurons have essential 
modulation effect on ionic currents during AP: water fluxes have 
activation and inactivation effects on ionic currents in membrane when 
they have same and opposite direction, respectively [9]. 

The next essential omission of membrane conductive theory is that 
the MP is considered as a sum of Nernst potentials of ionic gradients 
on the membrane, that it suggested the metabolic energy-driving Na/K 
pump as “neutral”, which does not have a direct contribution in the 
generation of membrane potential. This postulate was rejected later by 
a great number of experimental data performed on cells of different 
species of animals [10]. The idea that the electrogenic character of Na/K 
pump could have a crucial role in cell volume regulation was suggested 
by Dean since in 1941 [11]. However because of using non adequate 
experimental procedures to check this suggestion on the role of Na/K 
pump, indirect regulation of cell volume was discussable during long 
period. Only at the end of the past century on fresh isolated brain slices 
[12] and isolated single neurons of mollusks [13] was experimentally

proved the idea of regulatory role of electrogenic Na/K pump. It was 
shown also that the pump-induced cell volume regulation has a great 
physiological meaning for metabolic regulation of neuronal membrane 
functional activity [14]. The number of functionally active protein 
molecules in neuronal membrane, having enzymatic [15], receptors [9] 
and ionic channels forming [16] properties, are in functionally active 
and inactive (reserve) states, depending on active membrane surface 
(cell hydration). More detailed electron microscopic morphological 
and biochemical investigation of membrane surface invagination 
(caveola) have shown the membrane metabolic heterogeneity, 
having cell-hydration dependent variability [17]. As the activity of 
intracellular molecules depends on their hydration-induced folding 
[18], the pump induced regulation of cell hydration has a critical role 
for intracellular metabolism, including gene expression. At present it 
is well established that cell swelling triggers cell proliferation, while 
cell shrinkage promotes the apoptotic patterns [19-21]. The crucial 
role of cell hydration as a universal and extra-sensitive messenger 
through which the close-talking between intracellular metabolism 
and cell bathing medium is realized indicates its high sensitivity to 
homeopathic concentration (<10-10 M) of biologically active substances 
and non ionizing radiation (infrasound, light, millimeter waves, 
electromagnetic and static magnetic fields), the intensity of which is 
less than thermal threshold [6]. It was shown that even light has optical 
manifestations of the microscopic swelling of axons that accompanies 
the firing of action potentials in cultured neurons [22]. 

Despite cell hydration (including the neuronal) is one of the 
characteristic phenomena for aging, its role in the generation of age-
dependent neuronal dysfunction leading to memory loss and the 
increase of the risk of nerve disorders is not fully understood. It is known 
that the number of nerve disorders like Parkinsonism, Alzheimer’s, 
multiple sclerosis and other diseases, which are accompanied by memory 
loss, have the following metabolic characteristics: biphasic changes 
of neuronal hydration (increase and decrease of cell hydration), cell 
cytoskeleton deformation, decrease of O2 uptake, dramatic changes in 
lipid turnover, an enormous increase of sphyngomyelins in membrane 
[23-25]. At present the oxidative stress [26], τ phosphorylation [27] 
and extracellular deposits (senile plaques) of amyloid-β (Aβ) peptide 
generation are considered to be a key pathogenic mechanism in aging-
induced sclerosis and in the increase of nerve disorder generation 
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risk [28-30]. The study of oxidative damage in AD and normal aging 
has shown a strong inverse relationship between neuronal oxidative 
damage and neuronal size among cases of AD but not controls [31]. 

Therefore, it is suggested that the elucidation of the nature of cell 
volume controlling metabolic mechanism(s), dysfunction of which 
brings to neuronal dehydration in aging, could bring us close in 
understanding the reason of age-related nerve disorders as well.

It is known that among the number of mechanisms involved in cell 
volume regulation the Na/K pump has a crucial role in this process, 
because the Na+ gradient serves as an energy source for a number of 
secondary ionic transporters, such as Na+/Ca2+, Na+/H+, Na+/sugars, 
amino acids and osmolytes [21,32]. It is known that there are two 
enzyme systems actively involved in metabolic regulation of cell volume, 
associated with cation transport across surface membranes: transport 
ATPases, which are indeed the translocating structure and are fueled by 
the free energy derived from ATP hydrolysis, and kinases, which may 
regulate translocation via phosphorylation of the transporter molecules 
through the phosphorylation of associated regulatory structures. The 
interaction between these two enzyme systems is realized through 
the intracellular signaling systems, the dysfunction of which leads to 
generation of cell pathology, accompanied by corresponding changes 
of cell hydration. As the Na/K pump is the most ATP-utilizing machine 
in the cell, it serves as a main regulator of all other ionic pumps and 
kinases activity. Therefore factors, able to change the balance between 
the ATP hydrolysis and ATP production system (mitochondria), by 
changing the Na/K pump activity, could switch on the intracellular 
signaling systems-induced modulation of cell katabolic and anabolic 
processes.

Therefore the dysfunction of the Na/K pump–controlling cell 
hydration, can be considered as a common gate for cell pathology, 
including nerve disorders and cancer. However the nature of 
mechanism through which the Na+/K+ pump dysfunction leads to 
apoptosis and proliferation inhibition in excitable cells and enhance 
proliferation and inhibition of apoptosis in non-excitable cells stays 
unclear. 

The second ionic transporting mechanism in cell membrane, 
having a crucial role in cell volume regulation is the Na+/Ca2+ exchange 
[33-36]. It is known that there is a close correlation between the 
electrogenic Na/K pump and electrogenic Na+/Ca2+ exchange, which 
have been described since pioneering work by Baker et al. [37]. At 
present, thanks to great contribution of one of co-authors of this work 
Prof. Blaustein’s group, who discovered and characterized different 
isoforms of Na/K pump, a close correlation between these two ion 
transporting mechanisms on the level of different Na/K pump isoforms 
was shown [38,39]. 

The protein of Na++K+-ATPase (working molecule of Na/K 
pump) are αβ heterodimmers. The catalytic α subunit, contains the 
Na+, K+, Mg2+-ATP, and ouabain binding sites and is phosphorylated 
during each pump cycle. β subunit is essential for pump function; it 
stabilizes the α subunit conformation and chaperones the αβ complex 
to the cell membrane. There are 4 mammalian α subunit isoforms (α1 
to α4) which are products of different genes but have ≈ 90% sequence 
identity, different expression patterns, and different kinetics, and they 
are differently regulated [38,40-44]. The α4 subunits were discovered 
in sperm [45]. It is documented that the low affinity α1 of Na+ pump 
have a “housekeeping” function: they control, primarily, Na+ in bulk 

cytosol while the real function of the α2 and α3 catalytic isoforms and 
their functional significance, are uncertain [39,44]. They also have a 
different localization in cells: α1 is ubiquitously distributed over the 
surfaces of cells, while high ouabain affinity isoforms are confined to 
a reticular distribution within the cellular membrane that paralleled 
underlying endoplasmic or sarcoplasmic reticulum, with Na+/Ca2+ 
exchanger protein. It is suggested that α1 may regulate bulk cytosolic 
Na+, whereas α2 and α3 may regulate Na+ and, indirectly, Ca2+ in a 
restricted cytosolic space between the cell membrane and reticulum. 
The high ouabain affinity Na+ pumps may thereby modulate reticulum 
Ca2+ content and Ca2+ signaling [46]. By the α2 pump isoform-induced 
activation of Na+/Ca2+ exchange in reversal mode, leading to increase 
of blood pressure, was explained by increase of local concentration of 
Na ions in “junctional” sarcoplasmic/endoplasmic reticulum in result 
of nanomolar ouabain–induced inactivation of pump [44]. 

However the individual role of α3 isoforms of Na/K pump in this 
process remains unclear. Also is not clear the detailed mechanism 
of correlation between functions of α3 pump and Na+/Ca2+ exchange 
and its functional significance in norm and pathology. By our early 
works performed on mollusk’s isolated nerve ganglia have shown 
that high affinity ouabain receptors activation leads to elevation 22Na 
efflux from preliminary 22Na enriched neurons [16], which is due to 
activation of cAMP dependent Na+/Ca2+ exchange [47]. It is worth to 
note that in these in vitro experiments when initial intracellular Na+ 
concentration is higher compared to it in in vivo condition, activation 
effect of 10-10-10-7M ouabain on Na+/Ca2+ exchange in reverse mode is 
observed, i.e. at level of α2 and α3 receptors [48]. While in case of in vivo 
experiments performed on rats, low concentration 10-11-10-9M ouabain 
has activation effect on Na+/Ca2+ exchange in forward mode, which is 
accompanied by increase of intracellular cGMP [6]. 

As the dysfunction of Na/K pump is a common consequence of cell 
pathology and aging, leading to the accumulation of intracellular Ca 
ions, the latter, being a strong inhibitor for Na+/K+-ATPase, switches 
on the following metabolic cascade: the ATP accumulation stimulates 
the intracellular cAMP formation, which leads to the increase of 
cytoskeleton phosphorylation, while the contraction of Ca ions brings 
to cell dehydration. Previously it was shown that intracellular cGMP 
plays a key role in the activation of Ca efflux through Na+/Ca2+ exchange 
and Ca pump mechanisms [49]. As the cytoplasmic guanylyl cyclase 
activity, like other proteins, depends on its hydration, it is suggested 
that the aging-induced inactivation of cGMP formation could serve 
as a primary mechanism for switching on the pathogenic pathways 
(Na/K pump weakness, intracellular Ca ions and cAMP accumulation, 
oxidative stress, Aβ generation, DNA demethylation and damage, etc). 

Therefore, it is suggested that for understanding the nature of the 
mechanism underlying the ground of aging-induced memory loss and 
the increase of nerve disorder risk, it is extremely important to study 
the multisided role of osmotic stress on intracellular enzyme activity 
which is responsible for intracellular Ca homeostasis. This knowledge 
will greatly influence the strategies designed to decrease the aging-
induced risk of neuronal dysfunction. The fact that there is a close 
correlation between the electrogenic Na/K pump and the electrogenic 
Na+/Ca2+ exchange, which plays a crucial role in the regulation of 
intracellular Ca homeostasis, indicate that Ca efflux system is essential 
in the protection of Na/K pump activity from the pathogenic factor-
induced increase of intracellular Ca ions. Since the Na+/Ca2+ exchange 
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works in stoichiometry of 3Na:1Ca [37,39] it has a strong modulation 
effect on cell volume [36]. Therefore Na+/Ca2+ exchange has an 
extremely important role in the cell volume regulation process, namely 
in excitable tissue, having powerful Na+/Ca2+ exchange systems [36,39]. 
Its activation in Na influx and Ca efflux regime has hydration, while in 
reversal mode, i.e. in 3Na efflux and 1Ca influx regime – dehydration 
effects on cell. Thus the pump inactivation-induced elevation of 
intracellular cAMP content and intracellular increase of Na ions 
brings to the activation of Na+/Ca2+ exchange in reversal mode, having 
a shrinkage effect on cell [47,49]. It is worth to note that because of 
the higher affinity of intracellular proteins to Ca ions, the dehydration 
effect of 3Na efflux and 1Ca influx on cell is much more pronounced 
than Na/K pump effect. However this cAMP dependent Na+/Ca2+ 
exchange-induced dehydration effect on cell is observable only when 
the pump is in inactive state [50]. 

Taking together our recent data on α3 ouabain receptors-induced 
activation of Na+/Ca2+ exchange in forward mode which has age-
dependent dysfunctional character [51] and that in blood of mammals 
circulates an endogenous ouabain-like compound in nanomolar 
concentration leading to release of Ca ions from the intracellular 
storage [44] allow us to put forward a hypothesis that α3 isoforms 
dysfunction-induced intracellular 45Ca elevation could modulate a 
variety of kinase-mediated pathways, and thereby serve as a primary 
mechanism for generation of nerve disorders. 

The key role of the cyclic nucleotides in metabolic regulation of 
Na+/Ca2+ exchange is well documented: the increase of intracellular 
cAMP contents activates potential-dependent Ca2+ channel [52] which 
is accompanied by activation of Na efflux coupling of Ca2+ uptake [49], 
while the increase of intracellular cGMP activates the Na+/Ca2+ exchange 
in forward mode [53]. It is known that intracellular accumulation of 
Ca ions binding with calmodulin activates NO -cGMP pathway. Our 
previous data have shown that the NO-induced elevation of cGMP has 
activation effect on Na+/Ca2+ exchange in forward mode [54].

As the cytoplasmic guanylyl cyclase activity is highly hydration 
dependent, it can be suggested that the aging-induced dehydration 
could inactivate cGMP formation leading to the inhibition of Ca ion 
extrusion from the cell. The dysfunction of cGMP-dependent the Na+/
Ca2+ exchange in excitable cells has been suggested to underlie the 
ground of age-related cells dehydration, which leads to reduction of 
cell functional activity.

The reciprocal relation in development between cGMP-dependent 
Na+/Ca2+ exchange in forward and cAMP-dependent Na+/Ca2+ 
exchange in reversal mode was shown by our recent works on rats’ 
brain and heart muscle tissue: in young animals the Na+/Ca2+ exchange 
functioning in forward while in old animals - in reverse mode [51].

The data obtained in the work with rats as well as the earlier data 
obtained on snail isolated neurons and heart muscle, allow us to 
consider the aging-induced decrease of cell hydration to be the primary 
mechanism leading to age-related dysfunctions of different catabolic 
and anabolic processes. 
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