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Abstract
The incidence of diabetes mellitus has grown exponentially in the last few years. Etiopathogenesis of diabetes 

implies a β-cells damage in the islet of Langerhans, either through an autoimmune reaction present in type 1 diabetic 
patients or through altered function within these cells that affect their ability to secrete a properly functioning insulin 
hormone, in patients suffering from type 2 diabetes.

Exogenous insulin supply is, at the moment, the therapy of choice of the disease but it does not allow tight control 
of glucose regulation, leading to long-term complications. Over the past few decades, pancreas or pancreas-kidney 
organ transplantation has been the most effective treatment for severe diabetic patients. Recently, an alternative 
promising therapeutic approach, consisting of  successful pancreatic islet transplantation to reconstitute the insulin 
producing β cells, has also emerged. Unfortunately the number of donor islets is too low compared to high number 
of patients needing a transplant, so the search for new renewable sources of high-quality β-cells becomes highly 
topical.

In this review, starting from the description of state of art of islet transplantation, we summarize the more recent 
promising approaches to the generation of new β-cells giving a big enfacy to adult stem/progenitor cells.

Keywords: Type I diabetes cell therapy; Pancreatic progenitor cells;
Islet transplantation; Transdifferentiation of exocrine pancreatic cells.

Abbreviations: ADSCs (adipose derived stem cells): BM (bone
marrow): EPCs (endothelial progenitor cells): ESRD (end stage renal 
disease): ESCs (embryonic stem cells): IAK (islet transplantation after 
kidney grafting): HGF (hepatocyte growth factor): hPDMSCs (human 
placenta derived mesenchymal stem cells): HSCs (hematopoietic stem 
cells): IPCCs (insulin producing cell clusters): IPSs (induced pluripotent 
stem cells): MSCs (mesenchymal stem cells): STZ (streptozotocin).

Introduction
The goal of therapy of type 1 diabetes (DM-1) is to restore a glyco-

metabolic picture as close as possible to normal.

Since the cause of type I diabetes is the failure to produce insulin 
due to the destruction of β-pancreatic cells, the therapy is represented 
by the replacement of lost endocrine function. Since 1921, when 
Nicolae Constantin Paulescu, first in the world, was able to cure 
diabetes, having discovered insulin which he called Pancreina, for most 
patients the replacement therapy is the exogenous insulin supply. It 
has long been searching for therapeutic solutions able to ‘cure’ diabetes 
permanently, that is to replace the β-pancreatic cells, freeing patients 
from daily insulin requirements.

The more radical solution is the whole pancreas transplant, a 
surgical procedure developed in the last ten years, which has reached 
success rates comparable to those of other organ transplants (80% of 
transplanted patients achieved insulin independence and maintained 
for more than 6-8 years) [1].

However, pancreas transplantation is a challenging surgical 
procedure, requires a significant immunosuppressive therapy to 
prevent organ rejection and, therefore, takes place only in combination 
with a kidney transplant in diabetic patients with ESRD (end stage 
renal disease) on dialysis [2]. 

In the last few years islet transplantation has been developed as 

an alternative promising therapy but, more recently, experimental 
approach consisting of stem cells administration, transdifferentiation 
of ductal cells or genetic reprogramming seem the future of diabetes 
cell therapy

Pancreatic Islet Transplant
General considerations

The islets of Langerhans are clusters of endocrine cells and 
constitute about 1% of pancreatic tissue where they play a function of 
sensing glucose blood levels​​, secreting hormones that regulate them.

The pancreatic islets for transplantation are prepared by an 
isolation procedure, developed by Camillo Ricordi, which consists 
of a combined mechanical and enzymatic digestion of the pancreas, 
followed by a purification step through gradients of different density 
(Ricordi Chamber) (Table 1).

The possibility to culture pancreatic islets offers a range of 
therapeutic opportunities aimed at improving the efficiency and graft 
survival, which also is made with a technique much simpler than that 
required for vascularised pancreas transplantation. This procedure is 
associated with low morbidity and can be repeated, to give an additional 
dose of islets, when it is necessary to achieve adequate metabolic control 
and insulin independence.
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The first islet transplants performed in patients with type 1 
diabetes mellitus (DM-1) and under immunosuppressive therapy for 
organ transplantation, have been characterized by a low success rate, 
expressed in terms both of insulin independence and recovery of 
c-peptide secretion, due to the inconsistent quality of the transplanted 
islets and inadequate immunosuppression [3]. The revival of this 
procedure occurred with the development of an innovative scheme 
of immunosuppression, known as the ‘Edmonton Protocol’, and its 
application in selected centers in the world able to reproducibly obtain 
high quality islets [4,5]. The first results were excellent, with a success 
rate at one year of almost 100%, although, with continued experience, 
these decreased dramatically, especially at 2-3 years, but these data 
were of extraordinary importance because they helped to stimulate 
research in the field of β-cell replacement.

Benefits of islet transplantation

The goal of islet transplantation is to control blood sugar levels, 
restoring β-cell function. The tight control of blood glucose, obtained 
by administering intensive insulin therapy, has shown great benefits in 
preventing or delaying the progression of micro and macro-vascular 
chronic complications of diabetes, but these benefits are associated 
with an increased risk of acute severe hypoglycaemia [6,7].

The islet transplantation could be considered a valuable therapeutic 
option to achieve a short-term metabolic control in patients with DM-1 
with frequent and severe episodes of hypoglycemia without prodromal 
symptoms.

Immediately after the infusion of islets, also in cases of sub-optimal 
cell mass, it happens a dramatic reduction in daily insulin requirement, 
which is associated to an improvement in glycemic control, 
demonstrated by normalization of glycated hemoglobin, improvement 
in the c-peptide levels and insulin secretion during metabolic tests [8]. 

Although clinical trials, made in the 80s and 90s, have shown that 
graft function (defined clinically as the persistence of measurable levels 
of c-peptide in the blood) can be sustained over time, the insulin-
independence was achieved for a limited period in a fraction of patients. 

Recent clinical studies have shown that insulin independence can be 
achieved after repeated infusions of islets, using immunosuppressive 
protocols without steroids [9,10].

The normalization of glycated hemoglobin and insulin-
independence are generally obtained after transplantation of a sufficient 
number of islets (>13,000 islet equivalents / kg recipient body weight) 
in a single infusion or repeated infusions [11,12].

Other studies have reported insulin independence in 80% of 
patients at one year, when a protocol of sequential islet transplantation, 
in order to reach a sufficient mass, was performed [13].

Data suggest that transplantation provides a better metabolic and 
physiological control compared to insulin treatment; in particular islet 
transplantation allows a long-term prevention of severe hypoglycemia 
also when an insulin supportive therapy is required to maintain stable 
blood sugar levels (in the case of insufficient mass of transplanted islets 
or partial engraftment of them) [14,15].

The effects of islet transplantation on the progression of diabetes 
complications are currently under investigation, but it has been shown 
an improvement of left ventricular ability and no increase in carotid 
wall thickness during a three years follow-up post-transplant. An 
improvement in renal function after IAK (islet transplantation after 
kidney grafting), was also observed in patients with chronic renal 
failure and DM-1. Another interesting observation is the increase of 
blood flow in central retinal artery and vein [16]. 

Limits of islets transplantation

There are still many obstacles to overcome before achieving a 
successful islet transplantation in humans. There are several factors to 
consider to optimize pancreatic islets transplantation:

- Cold storage of pancreas before islet isolation should be less than 
eight hours;

- The quantity of islet cells: it should be transplanted a minimum of 
6000 IE/kg per weight of the recipient (where IE indicates islet 
equivalents: an expression of the volume of islets, converted to 
the number of islets with a diameter of 150 micrometers). 

- Administration of antilymphocyte antibodies at the time of islet 
transplantation

- Site of the transplant: currently liver is preferred;

- Adverse effects of immunosuppressive therapy based on the use 
of corticosteroids;

- Recurrence of the autoimmune processes associated with the 
DM-1;

- Ischemic processes that may affect the islet cells themselves.

Transplant of encapsulated islets

A variation to islet transplant, which is under experimentation, 
consists of their encapsulation with a selective, natural and non-
immunogenic membrane that allows free transport of oxygen, nutrients 
and hormones, but particularly a tolerance of humoral and cellular 
immune system against these “masked” islets. This would eliminate or 
reduce the need of immunosuppressive therapy [17,18].

This membrane is a polysaccharide, sodium alginate, which, 
in contact with islet cells in a solution of calcium chloride, manages 

Tab 1:  Procedure for isolation of pancreatic islets

Pancreatic islet cells are obtained from multiorgan donors after separation from 
the tissue surrounding the gland

»» The Wirsung duct is cannulated to allow injection of a solution containing 
collagenase in order to relax the organ and enable the achievement of an 
effective enzyme activity during the dissociation

»» The gland is then divided into several parts and transferred to the 
dissociation chamber, consisting of a lower portion, where the pancreas 
is inserted together with metal balls, and an upper portion consisting of an 
inverted funnel, separated by a porous metal filter with a specific porosity

»» The digestion process is the combination of the enzymatic effect (obtained 
by increasing the temperature) and mechanical (generated by the action 
of the ball during the stirring of the room) that results in the release of 
fragments of the pancreas that can pass through the filter metal due to the 
unidirectional flow of liquid dissociation

»» The digested pancreas is, then, purified by using different density gradients 
(continuous and discontinuous) in order to enrich the endocrine component

»» The islets that make up only 1% of pancreatic tissue can be viewed using a 
dye that gives it a distinctive red color

»» After the purification enriched fractions containing levels of purity can be 
obtained
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to wrap. The following islets transplantation is performed in the 
peritoneum [19,20].

Islets/stem cells combined transplant

Experimental data indicate that bone marrow transplant leads to 
a state of chimerism (coexistence of immune cells of the donor with 
those of the recipient) which can re-educate the recipient’s immune 
system to accept transplanted organs or tissues from the same donor 
without the need of immunosuppressive therapy. Stem cells could 
reconstitute the immune system of the donor into the recipient, 
“teaching” the recipient to accept the islet from the same donor [21]. 
These experiments have already proved effective in experimental 
animal models, but not in clinical trials.

Stem Cells: A Source for new β-Cells
Pancreatic stem cells

The postnatal pancreatic duct may harbour islet precursor/
stem cells because of specific cellular migrations during embryonic 
development [22]. Islet neogenesis, the generation of new islets from 
pancreatic stem/progenitor cells located in ducts, could be an active 
process in the postnatal pancreas; interestingly insulin-producing cells 
can be generated from adult pancreatic ductal tissues in vitro [23-28]. 
Fluorescent activated cell sorting, which allows characterization of 
human β-cells through CD95 [29], could be also a promising technique 
for isolation of multipotent pancreatic progenitors from both neonatal 
and adult pancreata. By combining flow cytometry and clonal analysis 
[30,31], some authors described molecular markers expressed 
specifically by possible pancreatic stem/progenitor cells candidate as 
the hepatocyte growth factor (HGF) c-Met. Moreover, they identified a 
newly specific marker for ductal cells, CD133 [31]. 

The use of adult stem cells isolated from patients could solve 
immunological problems associated to cell transplant. Unfortunately, 
adult stem cells are rare and difficult to expand in culture. In contrast, it 
has been reported that new generation of β-cells, after birth, could take 
origin from existing cells, and not from putative pancreatic stem cells 
[30]. Insulin-producing β cells are also produced from endogenous 
endocrine progenitors following injury [31]. The existence of adult 
pancreatic stem/progenitor cells and their ability to proliferate in 
response to particular stimuli should be more investigated.

Stem cells of no pancreatic origin

Recent studies have demonstrated that embryonic stem cells 
(ESCs) [32-34], induced pluripotent stem cells (IPSs) [35,36], and 
adult stem cells form bone marrow (BM) [37] pancreas [38,39], liver 
[40], umbilical cord blood [41], Wharton’s jelly [42], placenta [43], 
could differentiate into insulin producing cells. Because of their high 
pluripotency ESCs could be ideal for islet regeneration, but obviously 
their use is under debate for ethical/legal issues and risks of teratoma 
formation [44]. 

The seminal work regarding the potentiality of ESCs to differentiate 
to insulin secreting structure similar to pancreatic islets was published 
by Lumelsky and co-workers [32]. In this work authors identified a 
highly enriched population of nestin-positive cells from embryoid 
bodies (EBs) as possible candidates for pancreatic islets generation. 
EBs were plated into a serum-free medium to achieve a negative 
selection for all cell types different from nestin-positive cells. These 
cells were then expanded in the presence of a mitogen, basic fibroblast 

growth factor (bFGF), in N2 serum-free medium, followed by mitogen 
withdrawal to promote cessation of cell division and differentiation. 

Using a RT-PCR (reverse transcription polymerase chain reaction) 
authors showed that the ES cells processed following their protocol 
expressed GATA-4, a marker of definitive and visceral endoderm, 
HNF3b, a marker of definitive endoderm, as well as markers of 
pancreatic cell fate, including the murine insulin I, insulin II, islet 
amyloid polypeptide (IAPP), and the glucose transporter- 2 (GLUT 
2). Glucagon, a marker for the pancreatic α cells, was also induced 
in differentiated cells. The acquisition of a pancreatic fate was also 
confirmed by immunocytochemical analysis which showed insulin 
staining after mitogen withdrawal, resulting in many strongly insulin 
positive cells by the end of the processing.

The ability of ES cell–derived islet-like cell clusters to survive 
and function in vivo was tested through grafting cell clusters 
subcutaneously in the shoulder of streptozotocin-diabetic mice. 
Implanted cells vascularized, remained immunoreactive to insulin 
and formed aggregates morphologically similar to normal pancreatic 
islets. Authors did not observe a sustained correction of hyperglycemia, 
although grafted animals were able to maintain their body weight and 
survived for longer periods of time than hyperglycemic sham-grafted 
controls.

Boyd and colleagues [45] published a work which raised doubts 
about the Lumelsky’s protocol. The first was about the interpretation 
of gene expression data regarding the pancreatic markers; Boyd et al 
infact assert that it should be defined whether the gene expression was 
attributable to a single cell within the isolated cluster or whether all 
cells in the cluster had transcribed the genes. Furthermore, Lumelsky’s 
data showed that “insulin producing cell clusters” (IPCCs) had a mixed 
pancreatic phenotype because they express not only β-cells markers 
but also those of α-cells. 

Another weakness in Lumelsky’s protocol emerged from 
quantitative PCR data [45], which demonstrated that expression of 
insulin-1 and insulin-2 mRNA was consistently higher in IPCCs 
obtained by Blyszczuk and coworkers [46] compared to Lumelsky-
generated clusters, implying that the Blyszczuk protocol was capable 
of generating IPCCs with superior de novo insulin-producing activity. 
The amylase-2 expression in IPCCs obtained by other groups following 
Lumelsky’s protocol [47] suggested that the protocols may promote also 
exocrine differentiation; this evidence was not in favor of a unique β-cell 
phenotype acquired by ESCs. Rajagopal et al, observed also, though 
immunofluorescence, an attenuated relative ratio of c-peptide to insulin 
suggesting that the insulin content of IPCCs is an unequal combination 
of de novo synthesis and adsorption from the culture medium [48]. 
Most notably, however, the Blyszczuk protocol [46] consistently 
produced the highest level of c-peptide indicating that this protocol 
was capable of superior de novo synthesis of insulin. Furthermore cell 
clusters obtained from Lumelsky and Blyszczuk showed prominent 
glucagon containing [45] with insulin indicating, that IPCCs derived 
from ESCs may not surrogate β cells but may, in contrast, more closely 
resemble a hybrid of α and β cells. Boyd et al. proposed that glucagon/
insulin costaining could alternatively indicate that IPCCs derived from 
ESCs were developmentally immature endocrine cells as suggested by 
an high expression of neurogenin-3 which, instead, is downregulated 
in fully mature islets [49]. Authors suggested also that IPCCs could 
be defective in their glucose-sensing capacity in vivo. This contention 
was supported by the glucose stimulation assays that showed that 
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IPCCs released insulin in response to minimal glucose stimulation (3.3 
mmol/l glucose) but did not release significant amounts of insulin at 
higher glucose stimulation (25 mmol/l glucose).

In light of the aforementioned issues it seems that ESCs based 
strategy to obtain pancreatic islet like cells needs further investigations.

A valid alternative to ESCs could be adipose derived stem cells 
(ADSCs) because of their abundance, availability and possibility to be 
used for autologous transplant [50]. In this regard at least three different 
research groups showed that ADSCs could, under specific culture 
conditions, differentiate into insulin, somatostatin, and glucagon 
expressing cells or c-peptide positive cells [51,52]. In particular Chandra 
and coworkers [53] packed these cells in immunoisolation capsules and 
tested their in vivo/in vitro functionality demonstrating their ability to 
restore normoglycemic conditions in streptozotocin-induced diabetic 
mouse. Interestingly this study showed, for the first time, that also 
undifferentiated ADSCs were able to determine a moderate control 
of blood glucose levels, leading to the speculation that the autocrine 
and paracrine factors of regenerating pancreas and hyperglycemic 
local diabetic micro-environment of mice may contribute to ADSCs 
differentiation. It is worthy of noting that such a phenomenon it has 
also been shown for bone marrow derived stem cells [54].

Islet neogenesis from the constitutively nestin expressing human 
umbilical cord matrix derived mesenchymal stem cells has also been 
reported. Kadam and co-workers [55] showed that human placenta 
derived mesenchymal stem cells (hPDMSCs) could differentiate 
in islet-like cells able to restore normoglycemia when transplanted 
under the kidney capsules of streptozotocin-induced diabetic mice. 
Interestingly a gene expression profile of undifferentiated hPDMSCs 
showed, unlike human cord blood or amnion derived mesenchymal 
stem cells, that they express mRNA for insulin, glucagon, somatostatin, 
Ngn3, and Isl1.

Stem cells as a support for islet function and regeneration

Vascularisation of pancreatic islets is important for their ability 
to secrete insulin. Obviously islet isolation [56] needs a break of 
vascularisation which could compromise irremediably endocrine 
function; some preservation methods counteract this deleterious effect 
[57,58].

Endothelial cells deliver oxygen and nutrients to endocrine cells, 
and contribute to create a microenvironment for beta-cells function. 
In particular, they can induce insulin gene expression during islet 
development, stimulate beta-cell proliferation, and produce a number 
of vasoactive, angiogenic substances and growth factors [59-61].

Published works reported the ability of hematopoietic stem cells 
(HSCs), mesenchymal stem cells (MSCs), and endothelial progenitor 
cells (EPCs) to contribute to islet revascularization through vessel 
formation by differentiation into mature endothelial cells (EPCs) 
or release of proangiogenic factors such as hepatocyte growth factor 
(HGF) and vascular endothelial growth factors A [62-64]. In this 
regard Mathew et al [65] provided evidence that bone marrow derived 
EPCs, transplanted after a pancreatic injury, migrate to the site of 
damage helping the recovery of injured beta-cells even if they do not 
differentiate in insulin-producing cells.

Two other papers stress the concept of a synergism between β-cells 
and bone marrow (BM) derived cells. Sakata et al [66] showed that 
only a combined transplant (under the kidney capsule) using total 
bone marrow derived cells (not only mesenchymal cellular fraction) 

and islets was able to significantly lower blood glucose levels in a 
streptozotocin-induced diabetes murine model; interestingly in the 
case of transplant of BM cells alone there were no normoglycemic mice 
and no insulin-positive cells, suggesting that a direct differentiation of 
BM cells in beta-cells was unlikely. Ito and colleagues [67] provided 
similar evidence but in this case the site of combined BM cells/islets 
transplantation was liver and not kidney. 

BM derived stem cells could also have a role in stimulation of 
β-cells regeneration [68-70]. For example, it has been shown that 
infusion of mesenchymal stem cells in NOD/SCID mice, after STZ-
induced islet destruction, could increase the number of endogenous 
β-cells improving hyperglycemia.

Beyond Stem Cells based Therapy: Transdifferentiation 
of Adult Cells towards an Islet like Phenotype

The pancreas development starts with dorsal and ventral 
protrusions of the primitive gut epithelium that fusing later to form 
the definitive organ characterized by the appearance of glucagon-
producing cells (Figure 1). Then a few insulin-producing cells appear, 
often co-expressing the glucagon hormone. A later step consists of a 
peak of endocrine cell genesis leading to the generation of numerous 
fully differentiated insulin-expressing β-cells and glucagon-producing 
α-cells. At the end of pancreas development endocrine cells begin to 
form well-organized islets of Langerhans.

The mechanisms responsible for the development of these different 
endocrine cell types are not fully understood, but experiments 
consisting of generation of mice deficient for a number of pancreatic 
transcription factors helped to shed more light about them identifying 
Sox9, Pdx1, Ngn3, IA1, Pax4, Arx, Nkx2.2, Nkx6.1, Nkx6.2, Pax6, and 
MafA as crucial mediators of organ development [71].

All pancreatic cells derive from Pdx1-expressing progenitor cells 
[72] and this recent information was at the basis of a lot of experiments 

Figure 1: Derivation of all human tissues from germ layers. In particular, 
pancreatic cells take origin from the internal layer of endoderm.
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which allowed obtaining pancreatic cells from other cell types [73-75]. 
In all these cases it was achieved an adenoviral-mediated misexpression 
of Pdx1 in mouse liver observing a prevention of streptozotocin-
induced hyperglycemia in animal models. Besides this, Kaneto et al [76] 
showed that concomitant adenoviral application of two factors, Pdx1 
and Ngn3 or NeuroD in the liver of mice caused a transdifferentiation 
of hepatic cells into insulin-producing cells associated to a significant 
amelioration of glucose-tolerance.

Intriguingly, also exocrine pancreatic cells have the capacity 
to generate their endocrine counterpart when exposed in vitro to 
a particular microenvironment consisting of agonists of the JAK2/
STAT3 signalling pathway as epidermal growth factor and leukemia 
inhibitory factor [77]. We report also our experience in a porcine 
model about the isolation, by a surgical microdissection, of Wirsung 
duct cells which, upon simple in vitro exposure to glucose, acquired 
the ability to secrete insulin and glucagon [28]. Finally it seems worthy 
of note the finding that human monocytes treated with macrophage 
colony-stimulating factor and interleukin 3 can transdifferentiate in 
pancreatic islet-like cells in a glucose dependent manner [78]. 

Conclusions 
Regenerative medicine is one of the fields of research which has 

undergone the greatest development in the last few years. Undoubtedly 
diabetes cell therapy, for the enormous social and economical 
implications, is one of the most investigated branches of regenerative 
medicine. 

The first therapeutic approaches, consisting of pancreas transplant 
and, more recently, islet transplantation, showed significant limits 
so alternative approaches based on a full knowledge of cellular 
and developmental biology of pancreatic cells have been under full 
consideration in the last years. Transdifferentiation, the process 
which lead an adult cell to change its phenotype into another, seems a 
promising approach given that adult cells are autologous and are not 
dangerous or potentially tumorigenic and free of ethical implications 
as, instead, embryonic stem cells.

In conclusion, despite promising experimental published data and 
regardless of the strategies to increase availability of β-cells, the transfer 
of the experimental results to the clinic still seems far away. 
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