
Volume 2 • Issue 2 • 1000123
J Appl Mech Eng
ISSN:2168-9873 JAME, an open access journal 

Open AccessResearch Article

Luo, J Appl Mech Eng 2013, 2:2
DOI: 10.4172/2168-9873.1000123

Keywords: Topology optimization; Level set methods; Structures

Structural Optimization Using Level Set Methods
Over the past two decades, a relatively new field known as topology 

optimization is rapidly expanding in computational design research. 
In contrast to the detailed designs (e.g. size and shape optimizations) 
of a structure, topology optimization [1] is highly challenging at the 
conceptual design stage, because it requires automatic determination of 
an optimal material layout of a structure in conjunction with an optimal 
shape of the boundary, to make cost-efficient use of a given amount 
of material for improving the concerned structural performance. 
Topology optimization can be regarded as an iterative numerical 
procedure to re-distribute the material in a fixed reference domain 
subject to boundary conditions. The optimal topology of the structure 
can be obtained, in association with an optimal material connectivity, 
when a pre-defined objective function reaches its extremity under 
specific constraints. Topology optimization has been applied to a 
broad range of existing research areas [1], and is continuously being 
introduced to many new and emerging areas, as an enabling persuasive 
design technique.

Several typical methods have been developed for topology 
optimization of structures, including the homogenization method 
[2], the SIMP (Solid Isotropic Material with Penalization) approach 
[3,4] and the level set-based method [5-8]. Topology optimization 
essentially belongs to a family of integer programming problems with 
a large number of discrete design variables. On one hand, many well-
established more efficient gradient-based optimization algorithms 
cannot be directly applied, due to the discrete nature of the problem. 
On the other hand, conventional discrete optimization algorithms, 
such as the genetic algorithms, may not be used to effectively find the 
solution of such large-scale discrete optimization problems, due to the 
“NP-Hard” difficulty. To this end, the homogenization and SIMP are 
two typical methods, which have been widely used to relax the original 
discrete optimization problem, to allow the discrete design variables 
taking intermediate values ranging from 0 to 1.

In particular, SIMP, as an extension of the homogenization method, 
has received popularity in the area of structural optimization, due to its 
conceptual simplicity and implementation easiness. SIMP has already 
had several variant formulations, including elemental density based 
SIMP [4], nodal density based SMIP [9] and meshless field points based 
SIMP [10]. With SIMP, the original discrete optimization is changed to 
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Abstract
This paper will give a short survey about topology optimization of structures. It is particularly focused on topological 

shape optimization of structures using level-set methods, including the level-set based standard methods and the 
level-set based alternative methods. The former often directly solve the Hamilton-Jacobi partial differential equation 
(H-J PDE) to obtain the boundary velocity field using Finite Differential Methods (FDM), and the later commonly 
employ parametric or equivalent methods to evaluate the velocity field without directly solving the H-J PDE. The 
unique characteristics of the level-set based topology optimization methods are discussed, and a future perspective 
and prospects in this research area is also included. A benchmark numerical example is used to showcase the 
effectiveness of the level-set based methods.

a continuous one in an enlarged design domain. To make the solution 
close to the original 0 and 1 binary bounds, a ‘power-law’ criterion [4] 
is usually applied to SIMP model to penalize intermediate densities, so 
as to push the design domain to the original one as close as possible. 
To ensure a physically meaningful solution that is manufacturable in 
engineering, additional numerical techniques, such as the filtering 
schemes [1,11,12], are further applied to eliminate checkerboards and 
mesh-dependence [13-15].

Recently, the level-set based method, originally applied to 
propagate interfaces [16-18] in fluid mechanics, combustion, computer 
animation, material science and image processing, is emerging as a new 
technique well suited to optimizing shape and topology of structures. 
Sethian and Fedkiw [19] can be regarded as the first a couple of 
researchers who introduced the level set model into shape and topology 
optimization of structures. In level set based methods [6-8], the key 
concept is to implicitly represent the boundary as the zero level-set of a 
higher dimensional level set function of Lipschitz continuity. The level 
set function is defined over a fixed reference domain that includes all 
the admissible shapes and topologies of the design domain.

In level set methods, a pseudo-time is normally introduced into the 
level set function to enable the dynamic evolution of the discrete level 
set function [17,18]. The level set representation of dynamic implicit 
surfaces can be mathematically described as a level set equation, 
namely the Hamilton-Jacobi Partially Differential Equation (H-J PDE). 
Appropriate numerical schemes [20] are required to obtain the steady-
state solution of the H-J PDE. The motion of the level set function along 
the normal direction will lead to the motion of the design boundary, 
as well as the shape and topological changes of the structure at the 
zero level-set. It is noted that the tangent part of the velocity field only 
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contributes to the parameterization of the front [6,7,19].

Commonly, a level-set based topology optimization method should 
include three core elements: 

 1. Level-set model [16], to which the design boundary is implicitly 
represented as the zero level set of a higher dimensional level set 
function.

 2. A system of H-J PDEs [17,18], which can be either directly or 
indirectly solved using numerical methods, such as up-wind schemes.

 3. Shape derivative analysis [21,22] to enable the design sensitivities.

The level-set based method has experienced considerable 
development in the field of structural optimization. These topological 
shape optimization methods can be approximately classified into two 
major categories. The first of which [6,7,19,23,24] is based on the 
standard level set model [16,17]. The major characteristic of these 
methods is to use Finite Difference Methods (FDM), such as the up-
wind scheme [6-7], to directly solve the H-J PDE, based on a set of fixed 
Eulerian grid. The Finite Element Method (FEM) is typically utilized to 
evaluate the solution (e.g. displacement, strain and stress) of the state 
equations based on a set of Lagrangian mesh. The normal velocity at 
the design boundary can be obtained by using shape derivative analysis 
method. Finally, the velocity field is incorporated into the H-J PDE to 
enable the update of the discrete level set function values, and then the 
evolution of the design boundary.

However, in the standard level set methods, to numerically solve a 
system of complicate PDEs with Finite Difference Methods (FDM) is by 
no means easy. The numerical difficulties [6-8] related to the Courant-
Friedrichs-Lewy (CFL) condition, periodically applied re-initializations 
and velocity extension schemes have to be carefully handled in the 
numerical process. Furthermore, many efficient gradient-based 
optimization methods [1] that will be more effective and efficient, such 
as the OC (optimality criteria) method and SQP (sequential quadratic 
programming) approach, in the field of design optimization cannot be 
directly applied to solve these topology optimization problems. These 
issues have severely limited the application of the level set method to 
more advanced topology optimization problems.

The CFL condition [16,17] is mainly imposed to ensure numerical 
stability when the dynamic interface crossing the mesh. So the time step 
size is strictly restrained by the CFL condition, to ensure the marching 
size of the boundary is smaller than the minimum grid size in space at 
each step. In this way, a finer mesh will significantly increase iterations 
for convergence and as a result the overall computational expense, 
although a finer mesh may benefit the numerical accuracy to some 
extent. The re-initializations [6-8] are used to regularize the shape of 
the level set surface, as the unshaped level set function may lead to too 
steep or flat regions due to the unwanted dissipation of the front when 
FDM is used. It is noted [6-8] that the global re-initializations would 
limit the “nucleation” of the new holes inside the design domain, which 
will make the final design largely dependent on the initial guess of the 
design. Hence, to overcome the shortcomings in the first category of 
the level set methods, the level set model is better when transformed 
into a parametric or equivalent one to avoid drawbacks of its classic 
discrete forms, while retain the topological shape benefits of the level 
set boundary representation. In this way, the level set method will be 
naturally connected with the more powerful optimization algorithms 
in the field.

As a result, the second category is the development of alternative 
level set methods [25-31] for shape and topology optimization of 

structures, without directly solving the H-J PDE. For instance, Belytscko 
et al. [29] proposed a “narrow band” method, which represented the 
level set surface within a range of the zero level set boundaries, based on 
a set of nodal variables of the level set function. An optimality criteria-
based algorithm was employed to update those nodal variables within 
the narrow band, so as to advance the design boundary. Haber [30] 
proposed a multilevel continuation scheme, in which SQP was applied 
to update the implicit shape boundary rather than directly solving 
the H-J PDE. De Ruiter and Kenlen [31] developed a topological 
description function method, which only employed the concept of the 
implicit level set boundary representation to geometrically describe 
the design boundary, without the consideration of the H-J PDE. Luo 
et al. [20] proposed a semi-implicit level set method for structural 
optimization, that is, a semi-implicit additive operator splitting 
(AOS) scheme rather than the FDM was utilized to solve the H-J PDE 
numerically. Luo et al. [27] studied a multiphase level set method using 
the piecewise constant level sets. Luo et al. [25] proposed a powerful 
level set method using the parameterization of the compactly Supported 
Radial Basis Function (CSRBF) [25,26]. The discrete level set surface 
can be uniquely determined in terms of a set of pre-known discrete 
level set function values at knot positions and their corresponding 
shape functions. In this way, the complicated H-J PDEs are decoupled 
into a system of ODEs, and further to algebraic equations. The more 
difficult topological optimization is therefore transformed into a 
relatively easier size optimization, to which more efficient gradient-
based optimization algorithms can be directly applied. The numerical 
drawbacks associated with the re-initializations, CFL condition and 
velocity extension can be reasonably avoided.

Therefore, as discussed above, the level-set topology optimization 
of structures has developed as a powerful multidisciplinary method, 
which has been applied to a wide range of scientific and engineering 
applications across many structural, mechanical and material 
disciplines [8,24,27,32-37]. In contrast to conventional topology 
optimization methods (e.g. homogenization and SIMP) that optimize 
the geometry of a structure by varying densities of a fictitious material, 
the level set based methods offer the following unique advantages [5-8]:

1. Shape fidelity and topological flexibility. The level set method 
lends itself to a process of topological shape optimization, which 
indicates a seamless integration of shape optimization and topology 
optimization in the course of dynamic boundary merging and splitting.

2. Crisp and distinct material interfaces. This often plays an 
important role for the design problems involving strong interfacial 
phenomena, while avoiding ambiguities of gray-scale intermediate 
densities surrounding the design boundary in density-based methods.

3. Smooth boundaries. It is of great importance to problems 
requiring the description of more accurate response along the 
interface, while the density-based methods inevitably result in zigzag 
boundaries, as a result of describing the geometry of the structure using 
finite elements.

4. A physically meaningful solution can be obtained, based on the 
theory of viscosity solution of the Hamilton-Jacobi PDEs.

5. Without experiencing checkerboards. The topology optimization 
design of level sets is free of checkerboards that make a design 
practically manufacturable.

Numerical Example
In this section, one benchmark numerical example is conducted 

to show the effectiveness of the level-set based topology optimization 
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methods. It is practically impossible to run all the different level-set 
methods in this short survey paper. Hence, this research will focus 
on the parametric level set method [8] for topology optimization of 
a cantilever-type structure, which has been a well-studied problem 
widely accepted in the field. It should be good enough to demonstrate 
the unique characteristics of the level-set based topology optimization 
methods.

The design domain of the cantilever beam is shown in figure 
1 with a size of L=50. The left side is fixed, and a concentrated force 
F=1 is vertically loaded at the center point of the right side. The design 
domain is discretized with a mesh of 100×50 quadrilateral elements. 
The objective function is to minimize the mean compliance of the 
structure subject to a volume constraint (e.g. 50% is used here). The 
termination criterion for the convergence is the relative difference of 
the objective function values for two successive iterations is less than 
0.01. The artificial material model is stated as: Young’s modulus for 
the solid material is 1 and for the weak material in the void is 0.0001 to 
avoid numerical singularity in assembling the system stiffness matrix, 
and the Poisson’s ratio for all material phases is 0.3. It is noted that 
it is unnecessary to use explicit units for all the parameters, because 
the relative elemental densities are used. However, in the whole design 
optimization, the same set of units is required to be remained.

In the numerical implementation, the strain field of those elements 
crossed by the level-set boundary can be approximated via the simple 
but effective “ersatz material” scheme [7]. Although the initial level 
set surface is a signed distance function, no further re-initializations is 
applied to keep the shape of the level set surface in the optimization. The 
shape derivative method [21,22] is applied to find the design sensitivity 
of the design functions with respect to the design variables. The MMA 
[36] is used as the optimizer to update the design variables based on 
the sensitivity information, so as to evolve the level set function and 
design boundary.

Here, only the linear elastic structure is considered only for 
numerical simplicity but without losing any generality. The minimum 
compliance problem can be generally given by
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Where, the constraint is introduced to limit the material usage, and  
0V  is the prescribed volume ratio. u  is the displacement field, ε  is the 

strain field, v  denotes the virtual displacement field belonging to the 
kinematically admissible U  space, 0u   is the prescribed displacement 
on the boundary DΓ . E is the material elasticity tensor. ( )H Φ  is the 
Heaviside function to uniformly indicates the different parts (solid, 
void and boundary) in the reference domain D  [6,7].

The state equation ( , , ) ( , )a u v l vΦ = Φ  is written in its weak 
variational form in terms of the energy bilinear functional ( , , )a u v Φ  
and the load linear form ( , )l v Φ , which can be defined as

T( , , ) ( , ) ( ) ( ) ( ) ( )ij ijkl klD D
a u v c u v H d u E v H dε εΦ = Φ Ω = Φ Ω∫ ∫ 	                   (2)

( , ) ( ) ( )
D D

l v pvH d v dτ δΦ = Φ Ω+ Φ ∇Φ Ω∫ ∫ 	  	                  (3)

where p   is the body force while τ   is the boundary traction. ( )δ Φ   is 
the partial derivative of the Heaviside function ( )H Φ , namely the Dirac 
function [6,7].

Figure 2 shows the topological shape designs at different stages, 
while figure 3 shows their corresponding level set surfaces. From the 
design results, it can be seen that the proposed level set method is able to 
flexibly handle structural topology changes and boundary shape fidelity 
by retaining a smooth boundary and distinct material phases. The 
topology optimization and shape optimization can be achieved in the 
same design. The initial level set surface can be processed to implement 
complex topology and shape evolvements, by merging the exist holes 
and creating new holes inside the design domain. Furthermore, it can 
be seen that the numerical difficulties in the standard level set methods, 
including the CFL condition, periodically applied re-initializations and 
boundary velocity extension are reasonably avoided [8]. Particularly, 
the level set models (H-J PDE) are naturally bridged with many well-
established and more efficient gradient-based optimization algorithms 
(e.g. OC, SLP, SQP and SCP) in the field of design optimization. These 
features can greatly benefit the extension and application of the level-
set based methods to more advanced problems. It can be found that the 
parametric level set method owns the unique advantages in the context 
of level set methods, such as the (1) implicit level-set design boundary 
representation, (2) level set equation mathematically defined as a first-
order Hamilton-Jacobi PDE, and (3) rigorous shape derivative analysis 
for the design sensitivities.

Figure 4 displays the convergence of the objective function and 
constraint over the iterations. The structural mean compliance is 
minimized from 386.68 to 62.48 after 386 iterations. The volume 
constraint becomes active after the 8th iteration (9th and 10th iterations: 
between -1.5631e-007 and 1.7545e-007), and the volume constraint 
keeps conservative until the optimal design is obtained (385th and 386th 
iterations: -1.1931e-008 and 1.4187e-008).

Conclusions and Perspectives
The level-set based method is a recently emerged powerful 

methodology for shape and topology optimization of structures. The 
key concept of these methods is to represent the structural boundary 
implicitly as the zero level set of a higher-dimensional scalar function, 
which is mathematically defined as a level set equation, and then the 
shape derivative analysis is included to enable the dynamic motion of 
the design boundary. A benchmark numerical example has been used 
to demonstrate the major characteristics of the level-set based methods.

The level-set based methods provide many new features that 
well suit the optimization of structures. However, the level-set based 
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Figure 1: Design domain of a cantilever beam.
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achieve improved and novel designs in a number of new and emerging 
areas.
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