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DESCRIPTION
Mitochondrial dysfunction is a key factor in the pathophysiology 
of Parkinson's Disease (PD), affecting both random and familial 
cases. This dysfunction is caused by a variety of reasons, 
including bioenergetic abnormalities, mutations in 
mitochondrial and nuclear DNA, changes in mitochondrial 
dynamics, and the presence of mutant mitochondrial proteins. 
The loss of dopaminergic neurons in the substantia nigra, which 
is a characteristic of Parkinson's disease, is strongly associated 
with mitochondrial dysfunction. Understanding the 
mechanisms behind mitochondrial failure in Parkinson's disease 
is critical for developing therapeutic techniques to address these 
faults and potentially slow the disease's progression, providing 
for future treatments  [1].

Parkinson's Disease (PD) is a chronic and progressive 
neurological condition that affects around 1% of people aged 60 
and up. It is defined by the loss of dopaminergic neurons in the 
substantia nigra pars compacta, which causes motor symptoms 
such as tremors, stiffness, and bradykinesia. However, the 
pathophysiology of Parkinson's disease is complex and involves 
multiple factors, such as genetic, environmental, and 
mitochondrial malfunction [2-5].

Mitochondria are vital organelles that provide energy, maintain 
calcium homeostasis, and regulate apoptosis. They are dynamic 
structures that experience fusion and fission events, which are 
critical to their function and integrity. Mitochondrial 
dysfunction has been linked in the etiology of various 
neurodegenerative illnesses, including Parkinson's.

The role of mitochondrial malfunction in Parkinson's disease 
was first hypothesized in the 1980s, when it was discovered that 
PD patients had lower activity of mitochondrial respiratory 
chain complex I in the substantia nigra. Since then, numerous 
investigations have validated the involvement of mitochondrial 
dysfunction in Parkinson's disease etiology.

There is evidence that mitochondrial dysfunction leads to 
Parkinson's disease (PD). To begin, mutations in genes encoding

mitochondrial function proteins such as PINK1, Parkin, and 
DJ-1 have been linked to familial forms of Parkinson's disease. 
PINK1 and Parkin are involved in mitophagy, a process that 
selectively degrades damaged mitochondria, whereas DJ-1 plays a 
role in mitochondrial respiration and Reactive Oxygen Species 
(ROS) detoxification.

Second, investigations with neurotoxins that selectively target 
complex I of the mitochondrial respiratory chain, such as rotenone 
and Mitochondrial Permeability Transition Pore (MPTP), have 
been shown to cause dopaminergic neuron degeneration and 
motor impairments in animal models. These toxins disrupt 
mitochondrial function by blocking complex I activity, resulting in 
the buildup of ROS and oxidative stress [6-8].

Third, postmortem studies have revealed that Parkinson's disease 
patients had lower mitochondrial respiratory chain complex I 
activity and increased oxidative damage in the substantia nigra. 
Furthermore, electron microscope investigations have shown 
that PD patients have aberrant mitochondrial shape and 
distribution in afflicted brain areas.

One putative method by which mitochondrial malfunction 
contributes to Parkinson's disease development is the creation of 
oxidative stress. Mitochondria are the primary generator of ROS 
in cells, and defective mitochondrial activity can result in an 
increase in ROS generation, which can damage cellular 
components such as DNA, proteins, and lipids.

Increased oxidative stress has been reported in damaged brain 
regions in Parkinson's disease patients, and many markers of 
oxidative damage, such as protein carbonyls, lipid peroxidation 
products, and DNA oxidation products, have been found in the 
substantia nigra. In addition, decreased activity of antioxidant 
enzymes such as superoxide dismutase and glutathione 
peroxidase has been seen in PD patients, worsening oxidative 
damage.

Another way mitochondrial failure may contribute to 
Parkinson's disease development is by inducing apoptosis. 
Mitochondria regulate apoptosis, and failure in this mechanism 
can lead to cell death [9,10].
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In Parkinson's disease, the accumulation of damaged
mitochondria and the accompanying release of pro-apoptotic
proteins such cytochrome c can activate the intrinsic apoptotic
pathway. This can cause the activation of caspases, which are
proteases that cleave cellular components, eventually leading to
cell death.
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