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ABSTRACT

Human Mesenchymal Stem Cells (hMSCs) have immunomodulatory properties, mainly through 
their paracrine secretions, which contain anti-inflammatory molecules and exosomes. The favourable 
characteristics of hMSCs in the regeneration of damaged tissues have caused these cells to be considered a 
therapeutic approach in immune-related diseases. However, the cell therapy approach requires a detailed 
understanding of the behaviour of hMSCs in the inflammatory microenvironment of target tissues because 
MSCs may respond differently to this pathological microenvironment compared to normal physiological 
conditions. In addition, the level of influence that effective mechanisms of hMSCs, including paracrine 
approaches and cell contact, have on maintaining homeostasis and repairing damaged tissues is a subject 
of on-going controversy. hMSCs show different characteristics in vitro and in vivo depending on their 
tissue of origin. This variability is more apparent when the cells are derived from different donors, with 
fetal and adult sources showing different regenerative capabilities. Furthermore, the fact that hMSCs 
behave differently depending on the local microenvironment adds to the complexity of understanding 
the immunological pathways mediated by hMSCs. Previous research has demonstrated that the origin 
of MSCs (fetal or adult) has a significant impact on their immunological characteristics. This is due to 
differences in the cells’ mechanisms of cell contact and paracrine secretion, which ultimately affect the 
microenvironment of the MSCs. This study aims to review the immunomodulatory and immunogenic 
features of fetal and adult/somatic MSCs to highlight the effect of the cell source on paracrine secretions 
and the resulting microenvironment, both during in vitro expansion and in vivo after cell administration.

Keywords: Mesenchymal stem cells; Microenvironment; Paracrine secretions; Immune modulation; 
Immunogenicity

INTRODUCTION 

Human Mesenchymal Stem Cells (hMSCs), obtained from Bone 
Marrow (BM-MSCs) at first [1], have received much attention during 
the last decade due to the ease of use in human clinical trials, as 
well as available cryopreservation approaches used for preservation 
and storage [2]. In addition, some of their intrinsic properties 
are also important in tissue repair and regeneration, including 
anti-inflammatory and immunosuppressive-immunomodulatory 
activity, low immunogenicity, differentiation ability, and homing 
[3-5], as well as their ease of manipulation in the laboratory, like 

isolation from multiple tissues and the capacity to be adapted to 
large scale  culture expansion [6]. As MSCs can be expanded 
from different tissues of fetal and adult sources, a set of minimal 
criteria has been defined by the International Society for Cellular 
Therapy and Gene Therapy (ISCT) [7]. These criteria include: (a) 
binding to the plastic surface of the culture vessel; (b) expressing 
the mesenchymal surface antigens of CD105, CD73, and CD90, as 
well as lacking expression of hematopoietic markers such as CD34 
and CD45; and (c) multipotent capability to differentiate into 
osteoblast, adipocyte, and chondrocyte, under standard conditions. 
Over the last decade, new approaches have been developed to use 
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ex vivo-expanded MSCs in regenerative medicine. However, the 
belief that MSCs meeting the minimum criteria would respond the 
same way to the microenvironment of a damaged tissue is highly 
misleading.

MSCs’ plasticity is of great significance regarding their 
immunomodulatory properties, meaning that depending on 
the environment they are exposed to, they can have either a pro-
inflammatory or anti-inflammatory effect on the immune system 
[8]. MSCs regulate tissue homeostasis and integrity by adopting 
these contradictory phenotypes through interaction with both 
innate and adaptive immune cells [8]. For this purpose, MSCs 
become polarized and express different markers and mediators that 
prepare them for such contrary functions. In other words, these 
features enable MSCs to maintain a balance between physiological 
and pathological states of tissue [9]. A damaged tissue creates 
special conditions that resident or transplanted. MSCs have to 
deal with, including inflammatory responses by immune cells, 
death signals released by necrotic cells, infection circumstances, 
and oxidative stress [10]. The entire signals make MSCs quit 
the quiescent state and appropriately respond by initiating the 
mechanisms of proliferation, migration, and regeneration. The 
homeostatic microenvironment is regenerated by MSCs in a 
damaged tissue, through their contact with immune effectors and 
paracrine secretions, such as microvesicles, exosomes, and other 
related growth factors and chemokines/cytokines [11,12]. These 
factors affect the main characteristics of MSCs, including their in 
vitro multipotency, secretome and senescence,  survival, as 
well as their in vivo homing and integration into inflamed tissues 
[11]. 

When MSCs are expanded from a particular donor, the resulting 
cells can have varying phenotypes in each batch. This variability is 
more apparent when the cells are derived from different donors, with 
fetal and adult sources showing different regenerative capabilities. 
Previous research has demonstrated that the origin of MSCs 
(fetal or adult) has a significant impact on their immunological 
characteristics. This is due to differences in the cells’ mechanisms 
of cell contact and paracrine secretion, which ultimately affect the 
microenvironment of the MSCs. This study aims to review the 
immunomodulatory and immunogenic features of fetal and adult/
somatic MSCs to highlight the effect of the cell source on paracrine 
secretions and the resulting microenvironment, both during in vitro 
expansion and in vivo after cell administration.

LITERATURE REVIEW

Cell source options for regenerative medicine

Multipotent fetal/adult vs. pluripotent embryonic: Stem cells can 
be categorized into three main divisions based on the developmental 
hierarchy, including embryonic, fetal and adult/somatic stem cells 
[13]. There is a clear distinction between developmental stages and 
characteristics of stem cells obtained from. As Embryonic Stem 
Cells (ESCs) are derived from the inner cell mass of blastocysts 
leading to the destruction of a human embryo, using them raises 
ethical concerns. They are also tumorigenic which causes safety 
concerns to using ESCs in clinical trials [11]. Unlike ESCs, MSCs 
become senescent after long-term expansion, which reduces their 
tumorigenic potential. Therefore, there has been a growing interest 
in MSCs due to the absence of concerns associated with ESCs, e.g., 
teratoma formation and ethical issues [14-16].

However, the source of MSCs plays a vital role in determining their 

regenerative properties. It’s challenging to compare MSCs from 
different sources and measure their ability to regenerate damaged 
tissues in the body. Therefore, it’s essential to investigate the unique 
features of fetal and adult stem cells from different perspectives 
as they differ in hierarchical levels and may possess distinct 
regenerative capabilities. Research has shown that Fetal Stem Cells 
(FSCs) possess intermediate characteristics regarding the expression 
of stem cell markers related to pluripotency and multipotency 
identity [16]. Therefore, they are called highly multipotent stem 
cells in some papers [17]. FSCs, in addition, display a comparable 
capability to differentiate into all three embryonic germ layers like 
ESCs [13,16]. 

Fetal vs. adult: Using Adult Stem Cells (ASCs) in cell therapy 
has long been common, particularly those isolated from bone 
marrow for Hematopoietic Stem Cell Transplantation (HSCT). 
While Hematopoietic Stem Cells (HSCs) would be accessible by 
an “isolation” process, obtaining MSCs for cell therapy requires 
a time-consuming process of  expansion, which is called 
“derivation” [18]. Accordingly, selecting the appropriate source to 
derive MSCs can affect the success of the procedure. The derivation 
of MSCs from adult tissues has some limitations, such as ethical 
issues and variable outcomes. Adipose Tissue (AT) and bone 
marrow are the most used sources, but both require an invasive 
surgical procedure to harvest the cells. Additionally, studies have 
shown that functional MSCs can vary significantly depending 
on the donor’s age and health [19]. For example, MSCs derived 
from elderly, diabetic, obese, or atherosclerotic patients have less 
immunosuppressive activity than those derived from younger or 
healthy individuals [11,20]. 

The use of ASCs in cell therapy has been limited due to various 
reasons, and recent studies have focused on the more primitive fetal 
source of MSCs [11,21]. Fetal tissues are more rich in MSCs than 
adults and they can be easily accessible from normally discarded 
fetal and extra-fetal tissues at birth, such as umbilical cord and 
cord blood, placenta, amnion, and amniotic fluid [2,22]. MSCs 
make up only a small portion of the stem cell population. They 
are much more common during fetal life compared to adulthood, 
comprising roughly 1 in 3000 blood cells and 1 in 400 bone 
marrow cells during the second trimester of pregnancy. However, 
in a new-born and an 80-year-old healthy individual, the ratio drops 
to 1 in 10,000 and 1 in 2 million bone marrow cells, respectively 
[23,24]. Finally, regardless of the benefits mentioned, experimental 
studies have also shown that fetal/neonatal MSCs have more 
effective therapeutic properties than adult/somatic ones, including 
higher anti-inflammatory and immunosuppressive capacity, 
advanced homing ability and remarkably more efficient plasticity 
and potency [14-16]. Thus, all these features make fetal MSCs a 
prominent candidate for developing new strategies in the future of 
regenerative medicine. In Figure 1, the tissue-origin, and general 
properties of ESCs, FSCs, and ASCs are schematically illustrated.

Microenvironment: The foundation of tissue regeneration

Numerous cellular and non-cellular components constitute the 
local microenvironment, including immune cells and vascular 
elements such as pericytes and endothelial cells, tissue-resident 
fibroblasts and MSCs, structural proteins, glycoproteins, and 
proteoglycans of Extracellular Matrix (ECM) and its concomitant 
soluble factors like cytokines and chemokines, growth factors, 
angiogenic factors, etc. [25,26]. MSCs play an important role in 
restoring tissue homeostasis after disruption caused by chronic 
injury or acute trauma. To this end, MSCs regenerate the local 
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These and their possible differences between fetal and adult MSCs 
will be discussed later in below sections.

Immunomodulation 

As one of the decisive characteristics for tissue regeneration, the 
immunomodulatory and immunosuppressive features are renowned 
activity in MSCs that can be exploited to deal with inflammatory 
conditions as cellular therapies for immune-related diseases 
and transplantations. MSCs can alleviate the immune system by 
affecting innate responses by impeding the maturation of Dendritic 
Cells (DCs) and cytotoxicity of Natural Killer Cells (NKCs), as well 
as adaptive responses through disrupting the function of B cells 
and CD4+, CD8+ T cells [6]. It has been disclosed that MSCs, 
regardless of donor origin, suppress the proliferation of stimulated 
allogeneic leukocytes in a dose-dependent manner [41]. These 
properties are more correlated with the autocrine and paracrine 
effects of MSCs by releasing a wide range of cytokines, chemokines, 
and anti-inflammatory mediators [42,43]. However, consistent with 
prior research indicating distinct functions of MSCs from different 
origins, the immunomodulatory abilities may also differ based on 
the source of derivation [44-46].

Pathological conditions related to MSC’s immunomodulation: 
The regeneration of damaged tissue is highly dependent on 
immunoregulatory mechanisms that result from the interaction 
of MSCs with innate and adaptive immune cells in the 
microenvironment [6]. The immunoregulatory properties of 
human MSCs can alter inflammatory conditions and impact 
different effector cells, moving from lymphoid cells (T-and 
B-cells, NKCs), to myeloid components (monocytes, DCs) [47]. 
Results from many investigations illustrate the ability of MSCs to 
control the functioning of the immune system. It has also been 
suggested that dysregulation of MSCs might be involved in a range 
of pathological conditions, such as autoimmunity and chronic 
inflammatory diseases [48]. Adult MSCs play an important role 
in regulating the immune response in inflamed tissues. They can 
either act locally as tissue-resident MSCs or be recruited from the 
bloodstream via circulating cells released by the bone marrow 
[49]. These cells also assist in subsequent regenerative processes by 
acting as biosensors that can detect disease-specific inflammatory 
markers and migrate to the site of injury. As a result, they have 
been suggested to be involved in a range of autoimmune and 
inflammatory-related diseases [48].

microenvironment by secreting various biologically active substances 
such as cytokines, chemokines, growth factors and miRNAs. These 
molecules, collectively known as the MSC’s secretome, play a key 
role in the regulation of immune responses and the activation of 
local progenitor cells. The regenerated local microenvironment by 
MSC’s secretome determines the cell fate of other tissue progenitors 
by regulating their self-renewal and differentiation, which enhances 
the regenerative response [12]. 

It is generally believed that MSCs utilize two approaches for tissue 
regeneration. The first mechanism involves supplying cells that 
can help to “reconstruct” the tissue, while the second mechanism 
involves “empowering” other cells to promote the healing process 
by regulating inflammation [27]. Despite many reports proving the 
efficacy of MSC engraftment in preclinical and clinical studies [28-
30], the low rate of engrafted MSCs and their short-lived effect has 
demonstrated that the “empowerment” process may be even more 
efficient than the “reconstitution” to regenerate an injured tissue 
[31-33]. 

Moreover, studies in animal models of myocardial infarction, 
multiple sclerosis, renal failure and liver fibrosis, have revealed 
the success of MSC-based treatment despite the lack or low rate 
of transplanted MSCs in the target tissue [34-37]. Likewise, in 
autologous engrafted MSCs, these positive therapeutic effects 
have been observed in the immunocompetent models treated 
with allogeneic and xenogeneic sources of MSCs [38,39]. These 
findings lead to a similar conclusion that long-term transplantation 
is unnecessary in the regeneration, suggesting more efficiency of 
the enriched microenvironment than the cell replacement. It is 
attributed to the “MSC secretome” or “empowerment” process, 
as cases of inflammatory diseases have been cured with only the 
supernatant of MSC culture [37,40].

Based on many in vitro and in vivo studies, both derived MSCs and tissue-
resident MSCs, respectively, need to be “licensed” by inflammatory 
mediators to exhibit their immunomodulatory function. When 
MSCs encounter an inflammatory microenvironment 
in the damaged site, they respond by modifying paracrine activity 
to promote cell mobilization, proliferation, and immune cell 
recruitment to the site of injury, thereby facilitating tissue repair 
[40]. However, this interaction can also affect some essential 
characteristics of MSCs that are critical for their regenerative 
capabilities, including immunomodulation and immunogenicity. 

Figure 1: The schematic image illustrates tissue origin and general properties of embryonic, fetal, and adult stem cells. For general properties of stem 
cells, positive points are shown in green and negative points are shown in red. Note: ESCs: Embryonic Stem Cells; ICM: Inner Cell Mass; FSCs: Fetal 
Stem Cells; MSCs: Mesenchymal Stem Cells; AF-MSCs: Amniotic Fluid-MSCs; AM-MSCs: Amniotic Membrane-MSCs; WJ-MSCs: Wharton’s Jelly-
MSCs; UC-MSCs: Umbilical Cord-MSCs; UCB-MSCs: Umbilical Cord Blood-MSCs; PL-MSCs: Placenta-MSCs; ASCs: Adult Stem Cells; DP-MSCs: 
Dental Pulp-MSCs; A-MSCs: Artery-MSCs; H-MSCs: Hepatic-MSCs; P-MSCs: Pancreatic-MSCs; AT-MSCs: Adipose Tissue-MSCs; BM-MSCs: Bone 
Marrow-MSCs; M-MSCs: Muscle-MSCs.
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Recent research in the field of cancer has highlighted the 
importance of the immunomodulatory function of adult MSCs 
in the development and progression of the disease. Tissue-resident 
stromal cells are a major class of cellular components in the Tumour 
Microenvironment (TME), and their paracrine activity involves 
complex interactions with cancer cells, immune cells, and the 
Extracellular Matrix (ECM). These stromal cells play a critical role 
in tumour metabolism, growth, metastasis, immune evasion, and 
treatment resistance [50]. These cross-talks can be involved in the 
development of new lineages of malignant cells and heterogeneity 
of cancer stem cells, leading to the generation of drug-resistant 
lines. Recently, there has been an increased focus on identifying 
and targeting interactions between malignant and non-malignant 
cells in the TME for the development of therapeutic strategies [51].

Fetal MSCs play a critical role during pregnancy by releasing 
paracrine factors that potentially affect the prenatal period [52]. 
Compared to adult MSCs, FSCs possess an increased capacity for 
immunomodulatory activities. However, various conditions can 
affect FSCs’ characteristics, especially in pathogenic situations. Our 
recent study on AF-MSCs (as representative of fetal progenitors 
released by different tissues in the amniotic fluid) revealed that 
MSCs derived from fetuses of couples with a history of unexplained 
recurrent miscarriage (a possible immunologic disorder) exhibit a 
defect in their immunomodulatory capacity compared to AF-MSCs 
from couples without miscarriage problems. This difference is 
mainly due to the inherent characteristics of these cells that impact 
their paracrine factors [53]. The idea that the paracrine secretions 
of fetal cells may play a role in the modulation of the maternal 
immune system has been suggested in some other clinical findings. 
For example, pregnant women with autoimmune disorders like 
Multiple Sclerosis (MS) [54], Rheumatoid Arthritis (RA) [55], 
and autoimmune hepatitis [56], have experienced an inexplicable 
decrease in disease severity or improvement in symptoms.

Immunomodulation and cell origin: Apart from the intermediate 
state of FSCs between ESCs and adult MSCs regarding the stemness 
and related pluripotency markers [16,57], it has been established 
that FSCs possess higher immunomodulatory properties than adult 
MSCs [58-62]. Numerous reports have recorded higher, longer-
lasting immunomodulatory properties of FSCs in comparison 
with BM-MSCs as the most commonly investigated adult source 
[6,60,62-66]. It seems that the origin of FSCs is responsible 
for the large array of paracrine factors they produce, which are 
significant to their immunomodulatory capabilities. These soluble 
immunosuppressive and tolerogenic factors make FSCs more 
efficient at modulating the immune system [59,62,67,68].

Various signals that play a role in pregnancy-related processes are 
released from the placenta and fetal tissues, such as adrenal glands 
and liver, those are involved in the immunological function. From 
implantation to delivery, these signals are secreted into the mother’s 
blood by the fetus and placenta, thus modifying the production 
of maternal hormones. These compounds can be generally 
divided into two groups: Fetoplacental steroids that can alleviate 
the mother’s immune system, including progesterone, estrogens, 
androgens, and glucocorticoids; and complex peptide molecules 
that carry the immunosuppressive signals from fetus to mother, 
such as α-Fetoprotein (α-FP) released by fetal liver [69,70]. Recently, 
much attention has been paid to the fetomaternal immunological 
relationship between maternal immune systems and the fetus. 
This has led to the development of new therapeutic strategies for 

immune-related diseases [71,72].

Overall, studies have shown that fetal cells have a different gene 
expression profile compared to adult cells, which supports stronger 
immunomodulatory and immunosuppressive properties in fetal 
cells. For instance, it was demonstrated that fetal Dendritic Cells 
(DCs) are more efficient than adult DCs in reducing CD8⁺ T-cell 
proliferation and inducing T

reg
 cells. This is attributed to more 

than three thousand genes differentially expressed in fetal and 
adult DCs [73]. Similar comparative studies on fetal and adult 
MSCs exhibit different patterns of expression for genes related to 
adhesion, chemokines, and pro-inflammatory agents, despite their 
same mesodermal differentiation ability. These characteristics make 
FSCs more effective in immunomodulation [59]. Recent studies 
have confirmed that fetal liver-derived MSCs are more effective 
than adult BM-MSCs in suppressing activated conventional T 
cells and inducing T

reg
 cells [6,65]. In another study by Najar et al. 

[74], it was observed that AT-MSCs and BM-MSCs derived from 
adult sources express varying profiles of immunomodulatory genes 
compared to that derived from fetal Wharton’s Jelly (WJ-MSCs), 
including surface markers (e.g., CD73, HLA-G, HO-1) and soluble 
markers (e.g., HGF, PGE2, and IGFBP-3). The results suggest that 
WJ-MSCs have more immunosuppressive properties than the other 
two adult sources.

The expression profile of MSCs can differ depending on the 
source they are derived from. This can affect the proteins present 
on their surface and those secreted from the cells. As a result, two 
key aspects of MSCs in immune regulation, which are cell contact 
and paracrine activity, can vary based on the cell origin. While cell 
contact has been shown to play an important role in MSC-based 
immunosuppression, in this case, we will be focusing on how the 
paracrine activity of MSCs influences the microenvironment of the 
injured tissue.

Immunomodulation and microenvironment: MSCs can regulate 
the immune system by either contacting other cells or by releasing 
diverse factors. One of their main functions is to prevent T cells 
from activating inappropriately and to create a healing environment 
that promotes immune tolerance. This means that MSCs act as 
key regulators of the microenvironment in orchestrating the 
inflammatory responses through establishing a coordinated 
relationship with various immune cells. During this interaction, 
MSCs acquire a specific secretory profile, which is called licensing 
or priming. This allows them to act as either pro-inflammatory or 
anti-inflammatory cells, thereby modifying the microenvironment 
to maintain the immune homeostasis of an inflamed tissue [75].

The paracrine activity of MSCs includes a range of cytokines/
chemokines, growth factors, anti-inflammatory agents, and 
Extracellular Vesicles (EVs). By conveying regulatory messages to 
the cells of a damaged site, MSCs initiate tissue repair [12]. MSCs 
primarily have an immunosuppressive effect, acting as inhibitors 
of pro-inflammatory T helper 1 (Th1) pathways. However, 
they also play an essential role in favour of restoring immune 
homeostasis through the induction of T

reg
 cells, differentiation of 

anti-inflammatory Th2 cells from naïve T cells and Th1 cells, and 
promotion of a shift from pro-inflammatory M1 macrophages to 
anti-inflammatory M2 cells [76]. These mechanisms involve various 
signalling molecules that help maintain immune homeostasis in 
situations where the immune response is either over-activated 
or under-activated. This network is illustrated in Figure 2, and 
discussed in this section regardless of their fetal or adult origin.
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the homing of autoreactive CTLs to pancreatic islets and by 
mediating antigen presentation on β-cells in the islet inflammatory 
microenvironment, IFNγ appears to be a major contributor to the 
development of autoimmune pathology in T1D [84]. However, the 
complexity of the relationship between chemokine production, 
cytokine function, and the stimulation of MSCs at the site of 
inflammation, particularly in autoimmunity, is yet to be well 
understood.

Growth factors and immunosuppressive agents: MSCs have been 
found to enrich their microenvironment by releasing growth factors 
and immunosuppressive agents. Some studies have even suggested 
that the administration of these factors alone can be sufficient 
to elicit a therapeutic effect [36,37]. Various growth factors and 
immunosuppressive agents, such as HGF, EGF, FGF, PDGF, VEGF, 
IGF, SDF1, IDO, PGE2, and NO, work together to establish an anti-
inflammatory microenvironment. MSCs’ secretome, which contains 
these agents, modulates the inflammatory response, promotes the 
proliferation and autocrine activities in endothelial and fibroblast 
cells, and facilitates the proliferation and differentiation of tissue 
progenitor cells in situ [27]. Therefore, the therapeutic benefits of 
MSCs are more attributed to their “empowerment” approach that 
alleviates inflammatory responses by restoring tissue homeostasis.

Extracellular vesicles and exosomes: It has become increasingly clear 
that Extracellular Vesicles (EVs) are released by nearly all cell types 
and are present in high quantities in biological fluids such as blood, 
Cerebrospinal Fluid (CSF), saliva, and urine. These vesicles act as 
effective transporters of bioactive molecules, playing an important 
role in facilitating cell-to-cell communication. They usually share a 
common cargo composition of proteins, lipids, mRNAs, miRNAs, 
and DNA fragments that can be regulated based on the secreting 
cell type and its microenvironment [85]. This makes EVs a valuable 
tool to modulate the biology and fate of recipient cells, particularly 
for MSC-based therapy, as they can enhance safety by eliminating 
the need for the presence of MSCs themselves [12]. 

Exosomes are EVs that are formed when Multivesicular (MVs) 
bodies fuse with the plasma membrane. These exosomes have been 
extensively studied for their therapeutic effects in models of acute 
kidney injury, liver damage, and myocardial ischemia [86-88]. It 
has been acknowledged that the therapeutic effects of exosomes 

Cytokine/chemokine network: The cytokine network is a 
highly complex system of immune molecular messengers. It has 
multiple layers of activation and control mediated through soluble 
receptors, receptor antagonists, diverse serum mediators, and gene 
polymorphisms. Proteomic methods have revealed further layers 
of complexity and control in cytokine production and expression. 
These involve long coding RNAs, siRNAs, and miRNAs, which 
make cytokine production and control in the inflammatory 
process challenging to interpret [77,78]. Many cytokines can act in 
multiple ways or paradoxically at different times. Moreover, many 
act in feedback loops with the ability to control their production. 
The expression of cytokines is also influenced by local cellular 
microenvironments, suggesting that multiple pathways exist to 
achieve homeostatic immunologic control and effectiveness [78]. 
As mentioned earlier, the local microenvironment can contrarily 
intensify chronic immune activation due to dysregulated MSCs.

Chemokines and their cognate receptors play an important role 
in the recruitment and chemotaxis of immune cells to areas of 
inflammation. As a result, these molecules have become potential 
biomarkers and therapeutic targets for various autoimmune 
disorders [79,80]. Pro-inflammatory cytokines such as IFNγ and 
TNFα are responsible for creating an inflammatory environment 
in damaged tissues. Additionally, the activation of IFN-Stimulated 
Genes (ISGs) leads to the production of several chemokines in the 
damaged tissue (such as CXCL9/CXCL10/CXCR3 and CCL3/
CCL4/CCR5 axis) that recruit immune cells there [81]. IFNγ is also 
vital in polarizing MSCs from an unlicensed to an activated state 
[8]. Therefore, the high levels of IFNγ in the microenvironment 
around the inflamed area can cause the expression of chemokines 
and induce the activation of MSCs [81,82]. This elaborate cross-talk 
among these components (resident cells, immune cells and MSCs) 
in the inflamed microenvironment is believed to be implicated in 
the pathogenesis of autoimmune diseases. Our recent study found 
that the interaction of preconditioned and non-preconditioned 
human AF-MSCs (IFNγ⁺ and IFNγ⁻, respectively) with Peripheral 
Blood Mononuclear Cells (PBMCs) from patients with Type 1 
Diabetes (T1D) resulted in different expression of chemokines 
and their receptors compared to PBMCs of healthy donors. We 
also detected the same opposite trend in their paracrine activity 
through the induction of T regulatory (T

reg
) cells [83]. By controlling 

Figure 2: The cellular components and their paracrine factors constitute an inflammatory microenvironment in injured tissue. The MSCs of tissue-
resident and circulating in peripheral blood, as well as resident immune cells and those recruited from blood release various signalling molecules in 
the microenvironment to maintain immune homeostasis, including cytokines, growth factors, anti-inflammatory agents, and extracellular vesicles.
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by CD4⁺ effector cells due to the lack of class II MHC on their 
surface [99].

Pathological conditions related to MSC’s immunogenicity: 
Despite possessing these features and the anti-inflammatory 
qualities of MSCs, the results of several in vivo studies and clinical 
trials have indicated that the expression of mismatched MHC 
molecules by donor MSCs can trigger recipient lymphocytes 
to differentiate into MHC-specific effector and memory cells 
[100]. Additionally, antibodies produced after B cell activation 
by allo-antigens and cytokine-dependent upregulation of HLA 
molecules in transplanted cells lead to the rejection of allogeneic 
cells [101]. According to a study conducted on horses, injecting 
MHC-mismatched MSCs intradermally caused the production of 
cytotoxic anti-MHC I isoantibodies, while a similar effect was not 
observed for MHC-matched MSCs [102]. Despite most clinical 
trials demonstrating that those injected with allogeneic MSCs did 
not generate substantial alloantibodies, 10% of patients did possess 
alloantibodies [103,104]. Thus, checking the immunogenic status 
of MSCs before injection can positively impact the success of cell 
therapy.

It is important to consider hemocompatibility when intravascular 
infusion of MSCs is used in clinical trials. The use of incompatible 
MSCs with circulating innate immune cells can lead to fatal adverse 
events such as thrombosis and embolism [105,106]. In addition, in 
vitro expanded MSCs have the capacity to activate both coagulation 
and complement pathways, which can result in innate immune 
attacks known as Instant Blood-Mediated Inflammatory Reaction 
(IBMIR). The expression of tissue factor (TF or CD142) on MSCs is 
responsible for these attacks and can cause thrombosis when these 
cells come in contact with peripheral blood [105]. A recent clinical 
trial on critically ill patients with COVID-19 was the first study to 
evaluate the Pro-Coagulant Activity (PCA) of human TF⁺ immature 
dental pulp stromal cells (hIDPSC, NestaCell product) before 
administration. Although the product cells varied from 0.2% to 
63.9% in terms of the TF⁺ percentage of the population, cells with 
a TF⁺ proportion of less than 25% were selected for treatment. It 
was found that thromboelastography (in vitro) was insufficient to 
predict the risk of TF⁺ MSC treatments. Also, it was determined 
that, apart from TF, other unnamed factors are likely involved in 
the PCA of hIDPSC [107].

TF/CD142 plays an important role in the coagulation process 
and is the primary cause of IBMIR. It has been suggested that the 
impact of TF/CD142 on coagulation and compatibility should be 
assessed before MSC injection. As such, TF/CD142 expression 
should be included in early evaluations as a phenotypic immune 
marker [106,108]. Recent in vivo studies have revealed varying 
levels of highly pro-coagulant TF/CD142 in different sources of 
MSCs [106,109]. Clinical trials have also reported side effects, 
particularly thrombogenic events, after infusion of MSCs from 
both fetal [19,110], and adult [111,112], sources. While comparing 
these studies can be misleading due to differences in experimental 
conditions, comparative studies conducted by Moll and colleagues 
over the last decade have shown that PCA is observed in both 
adult BM-MSCs and placenta-derived Decidual Stromal Cells 
(DSCs) [113-115]. However, TF/CD142 expression levels are higher 
in DSCs, which leads to stronger PCA than BM-MSCs. These 
findings may be due to the high levels of TF/CD142 expression 
in blood cells and vascularized organs such as the placenta [116]. 
Another comparison between two adult sources of MSCs, AT- and 
BM-MSCs, has shown that TF/CD142 expression levels were lower 

derived from fetal sources (e.g., WJ-MSCs) on animal models of 
acute kidney injury are mediated by miR-15a, miR-15b, and miR-
16. These miRNA molecules act as inhibitors of the CX3CL1 
ligand, which is a potent chemical adsorbent for macrophages and is 
mainly expressed in endothelial cells. As a result, the accumulation 
of pro-inflammatory (M1 phenotype) macrophages in the kidneys 
is suppressed [89].

In addition to exosomes, MSCs also release larger MVs that 
contain lysosomal-like vesicles and complete mitochondria. This 
suggests that MVs containing these organelles are released from 
MSCs and may target adjacent cells for mitophagy [90]. Recent 
studies indicate that mitophagy and healthy mitochondrial 
function are critical to the survival of stem cells, and may affect 
the interaction of MSCs with macrophages as fundamental 
components of the stem cell niche in bone marrow. It has been 
revealed that MSCs can manage their intracellular oxidative stress 
by directing depolarized mitochondria to the plasma membrane 
using arrestin domain-containing protein 1-mediated microvesicles. 
These microvesicles are then engulfed and reused by macrophages, 
leading to enhanced bioenergetics. Additionally, it has been found 
that MSCs release microRNA-containing exosomes that prevent 
macrophage activation through the suppression of the Toll-like 
receptor signalling pathway. As a result, macrophages become 
desensitized to the ingested mitochondria. These findings provide 
further insight into the regulatory activity of MSCs to regulate the 
innate immune system, particularly macrophages [90-92].

Immunogenicity 

It has long been thought that MSCs are “immune privileged” or 
“hypo-immunogenic”, making them capable of avoiding detection 
by the immune system. However, in vivo studies and clinical trials 
have provided compelling evidence describing the generation of 
antibodies against allogeneic MSCs that led to their rejection. 
Hence it has been suggested that MSCs are immune-evasive, not 
immune-privileged [93]. A ‘hit and run’ mechanism has been 
suggested to enable MSCs to fulfil their therapeutic purpose by 
avoiding immune detection and recipient sensitization to donor 
antigens. This mechanism is mediated by MSC’s secretome, i.e., 
through their “empowerment” approach, during the early phase of 
injection [33,93]. The immune-invasive nature of MSCs, specifically 
those from fetal sources, points to their low immunogenicity, 
making them “immunologically safe” for use in allogeneic clinical 
applications [94,95].

Allogeneic MSC transplantation faces the challenge of immune 
rejection in which both innate and adaptive immune responses are 
involved. The key molecules implicated in this process are classic 
Major Histocompatibility Complex (MHC) and costimulatory. 
While MHC molecules bearing antigens are recognized by T Cell 
Receptor (TCR) on naïve T cells and leading to their activation, 
costimulatory molecules amplify the MHC activation signal. Class 
I and II MHC molecules are recognized by CD8⁺ Cytotoxic T 
Lymphocytes (CTLs) (the main factors of cell transplant rejection) 
and CD4⁺ effector cells, respectively [96]. Acute graft rejection is 
mainly attributed to the recognition of MHC class I molecules by 
CTLs (days or weeks after transplantation), whereas chronic graft 
rejection is due to the function of CD4⁺ effector cells as a result of 
the recognition of Class II MHC molecules on donor cells [97]. The 
low level of class I MHC on MSCs, particularly those derived from 
human fetal sources such as AF-MSCs, makes these cells protected 
from CTLs and NKCs-mediating phagocytosis and reduces the risk 
of transplant rejection [98]. Also, MSCs could be barely recognized 
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used for expansion have varying effects on the immunogenicity 
of FSCs and ASCs [130-132]. Indeed, in vitro microenvironment 
has a substantial impact on the immunogenicity of cultured cells. 
Recently, a new line of MSCs called IACs have been derived 
from human adipose tissue that are immune-privileged and pro-
angiogenic. These cells are produced by using a specific chemical 
cocktail in the culture system that contains cytokines, small 
molecules, structural proteins, and other essential components. 
IACs have demonstrated an increased pro-regenerative potential 
and elicited a milder immune response compared to conventional 
AT-MSCs [133].

Cytokines: It has been known that different cytokines and their 
levels in the environment can affect the expression of MHC and 
the phenotype of MSCs [96]. For instance, increased expression of 
HLA-DR was observed in BM-MSCs cultured with media containing 
human serum [134], with a correlation between HLA-DR and 
levels of interleukin (IL)-17F and IL-33 [135]. In addition, HLA-DR 
expression was induced by incubating MSCs with IFNγ and other pro-
inflammatory cytokines in vitro [134,136]. Nonetheless, numerous 
in vitro studies have shown that preconditioning MSCs with pro-
inflammatory cytokines, particularly IFN-γ and TNF-α, increases 
the expression of anti-inflammatory molecules and promotes their 
immunosuppressive properties [12,137]. These findings have also 
been confirmed in animal models in which preconditioned MSCs 
enhance islet allograft survival [138]. Furthermore, TGFβ2 has been 
shown to downregulate the expression of MHC I and II molecules 
induced by IFNγ on MSCs, without changing their morphology 
and surface markers. Also, the treatment of MSCs by TGFβ2, in 
a medium lacking IL-1β and TNFα, has been found to decrease 
their immunogenicity [139]. While more research is necessary, 
these studies suggest that preconditioning plays an important role 
in balancing the immunosuppressive properties of MSCs with their 
immunogenicity.

Oxygen level: The oxygen level during in vitro expansion is an 
important factor in MSCs’ microenvironment affecting their 
immunogenicity. Several studies have confirmed the positive effects 
of hypoxic in vitro conditions on the survival, immunomodulatory 
properties, and angiogenic capacity of MSCs from both fetal 
and adult sources [137,140]. In addition, hypoxic conditions 
can increase the proliferation potential of MSCs, improve their 
antioxidant capacity, and enhance their therapeutic effect on 
radiation-induced lung damage in mouse models [141]. Despite the 
advantages of hypoxic conditions on the beneficial characteristics 
of MSCs for cell therapy, numerous studies have indicated that it 
can also cause MSCs to lose their immune privilege and become 
immunogenic [142]. This is attributed to proteasome activity, 
whereby intracellular degradation of MHC II mediated by 26S 
proteasome under normoxic conditions is abolished during hypoxia. 
Accordingly, the down regulation of Heat Shock Protein-(HSP-) 90α 
under hypoxic conditions leads to the inactivation of proteasome 
and consequently the loss of immune privilege in allogeneic MSCs 
due to upregulated MHC II [140]. Hypoxia also increases the 
biosynthesis of MHC II in MSCs through upregulation of Sug1 
(ATPase subunit of 19S proteasome) and enhanced binding to class 
II transactivator (CIITA), a transcriptional coactivator of MHC II, 
which ultimately results in increased biosynthesis of MHC II in 
MSCs [141]. Additionally, exposure of MSCs to hypoxia leads to the 
downregulation of PGE2 and the loss of MSC immune privilege 
due to proteasome-mediated degradation of COX2, the rate-
limiting enzyme in PGE2 biosynthesis [142]. While there have been 

in BM-MSCs, resulting in lower PCA [117]. Although the intensity 
of PCA is directly correlated with the amount of TF/CD142 
expressed by donor cells, it is also a dose-dependent property that 
increases with ex vivo expansion and cryopreservation [96].

Immunogenicity and cell origin: Several factors may affect the 
immunogenicity of MSCs, such as the source of the cells, the donor 
status, the culture conditions, and the host status [96]. Like other 
characteristics of MSCs, the immunogenicity features are influenced 
by two main reasons-the origin of the cells (cell source and donor 
status) and the microenvironment (culture conditions and host 
status). Different studies have reported varying immunogenicity 
levels among MSCs according to their tissue or fetal/adult sources. 
In most studies, the expression of Human Leukocyte Antigens 
(HLA), which represent the MHC class I and II receptors, is used 
to determine the immunogenicity of MSCs. The HLA-ABC surface 
antigens are the major contributors to the production of alloreactive 
memory-CD8⁺ T cells [118]. Studies have demonstrated that adult 
tissues display variable levels of immunogenicity. For example, a 
study on AT-MSCs and BM-MSCs at the single-cell and cultivation 
levels showed that AT-MSCs had lower expression levels of HLA 
class I [119]. Additionally, it has been found that the percentage of 
MHC II expression in adult MSCs from young donors was lower 
than that from old donors [120].

It has been suggested for a while now that fetal MSCs are less likely 
to cause an immune response than adult cells. A study conducted 
on human UC-MSCs and adult BM-MSCs found that fetal cells 
had significantly lower HLA class I expression, meaning they were 
less likely to be recognized by the host immune system. When 
tested in an immunocompetent animal model, the fetal cells were 
also shown to have lower allogeneic and xenogeneic immune 
activation and were rejected more slowly than the adult cells [121]. 
Another study, based on the analysis of immunogenicity by Mixed 
Lymphocyte Reaction (MLR) in vitro between fetal UC-MSCs and 
adult AT-MSCs, demonstrated that both fetal and adult sources 
lacked MHC II. UC-MSCs also expressed lower levels of MHC 
class I receptors and IFNγ receptors than AT-MSCs [122]. Similarly, 
many other studies also report lower surface levels of HLA class I in 
FSCs than in ASCs [123-125].

Furthermore, the lack of HLA class II has been reported in FSCs, 
neither on their surface nor in intracellular form. In contrast, 
ASCs express the intracellular form of these antigens when they 
are in the basal immune state without the stimulatory effect of pro-
inflammatory cytokines (e.g., IFN-γ). In this regard, the response of 
fetal and adult MSCs to IFN-γ stimulation is different, resulting in 
surface induction of HLA class II at different rates (only after 1 day 
in ASCs and after 7 days in FSCs) [125,126]. Other reports indicate 
that HLA class I and II expression is reduced in fetal cells compared 
to adult MSCs after being exposed to IFN-γ [127]. Overall, FSCs are 
widely held to be less immunogenic, at least initially, than ASCs 
[24,125,128,129], thus indicating the potential advantages of using 
FSCs in certain clinical procedures. 

Immunogenicity and microenvironment: Aside from the source 
of cells, the microenvironment in which MSCs are located can also 
affect their immunogenicity. This includes the culture media used 
during in vitro expansion and the host environment following in 
vivo administration. In this section, we discuss some well-recognized 
factors of the microenvironment involved in the immunogenicity 
of MSCs, including culture medium, cytokines, and oxygen level.

Culture medium: Studies have shown that the culture media 
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Several studies have shown that MSCs derived from different 
sources, in different culture conditions, from donors with different 
ages and diseases have distinct biological properties [149-161]. For 
example, one previous study compared the gene expression profile 
of MSCs derived from the fetal liver and adult bone marrow. These 
cells can be easily expanded in vitro and senesced later in culture. 
Both MSCs have immunomodulatory properties and are non-
immunogenic, even though some differences have been observed 
[162]. However, to our knowledge, there are not many studies to 
analyze the differentially expressed genes between FSCs and ASCs. 
A recent study discovers robust DEGs between BM-MSCs of fetal 
and adult sources using the two existing GEO datasets. This study 
reported 388 up-regulated and 289 down-regulated DEGs in ASCs 
compared with FSCs. After data mining and network analysis, the 
most considerably over-expressed genes in ASCs were MYC, KIF20A, 
HLA-DRA, and HLA-DPA1 [148]. These four hub genes, the MYC (a 
senescence-associated gene), KIF20A (involved in the cell cycle) and 
two HLA-DRA and HLA-DPA1 genes, induced during age-related 
inflammatory conditions. More experiments and network analysis 
are necessary to determine DEGs between FSCs and ASCs and 
understand differences in function and differentiation potential 
that exist between them. Some of the studies conducted in this field 
are listed in Table 1, which are worth studying and bioinformatics 
analysis. Overall, it seems that analysis of the mentioned GEO 
datasets in this Table 1 could help to unravel the molecular basis 
of the senescence phenomenon. Finally, it can open the way to 
improve ASCs performance compared to FSCs, which may lead to 
upgrading of clinical protocols.

several studies on the immunogenicity of MSCs, understanding the 
impact of various components of the microenvironment on MSCs’ 
immunogenicity requires further investigation.

DISCUSSION

Differentially Expressed Genes (DEGs) between fetal and 
adult stem cells 

Stem cells can be isolated at all stages of ontogeny, from early 
embryos to post-reproductive adults. While fetal and adult MSCs 
may appear similar in terms of morphology and surface markers, 
studies indicate that MSCs derived from fetal tissues are more 
adaptable and exhibit greater self-renewal capacity, both in vivo 
and in vitro [143,144]. FSCs can safeguard against ageing and 
possess a greater capacity to multiply than adult stem cells. These 
cells can expand more easily in laboratory conditions and display 
no obvious change in phenotype after a long culture. Long-term 
culture is necessary to obtain suitable numbers of MSCs for clinical 
use, even if senescence and impaired function may occur during  

 expansion [145,146]. Although adult stem cells are less potent 
compared to FSCs, they still have a vital role in maintaining overall 
health. Additionally, the use of fetal tissue is still being debated 
and not widely accepted. Therefore, understanding the differences 
between FSCs and ASCs, as well as their regulatory mechanisms, 
could provide valuable insights into the clinical application of adult 
stem cells. However, the precise molecular mechanisms responsible 
for these disparities are still not entirely comprehended [147,148].

Table 1: A list of studies conducted on the MSCs of fetal (FSCs) and adult (ASCs) sources, cell types and number (N) of samples, the purpose and the 
results obtained and GSE number.

Ref. Cell type and N. of samples Aim Result Method and GSE-number

[149]
Primary human lung 

MVPC and Fetal lung MSC/
N=9

Finding hallmark signaling 
pathway of ageing and 
chronic lung disease

A significant role for mTOR in the maintenance 
of MVPC function, microvascular niche 

homeostasis and lung ageing 

Transcriptome analysis by 
array with Platform:

GPL6244/
GSM7055827,GSE225760

[150]
Adult human Sertoli cells and 

precursor of testicular germ 
cell tumours type II/N=16

Understanding the exact 
pathogenesis of germ cells in 

young men

Interactions between Sertoli cells and tumour 
cells/impaired in Sertoli cells associated with 

GCNIS represent adult cells undergoing 
progressive dedifferentiation

Whole Human Genome 
Microarray/ Platforms: 
GPL6480, GPL17077/

GSE169557

[151]
Tonsil-derived MSCs 

(T-MSCs)/N=4
To identify specific 

biomarkers for senescent cells

Activation of ECM-receptor signalling, can 
regulate stem cell senescence in T-MSCs/

increase the therapeutic efficacy of T-MSCs in 
clinical applications.

Transcriptome analysis 
by array with Platform: 

GPL23126/GSE149588

[152]
Human iPSCs-derived MSCs 

(iMSCs)/N=18

Determining the primary 
MSCs is fraught with aging-

related shortfalls

iMSCs irrespective of donor age and cell source 
acquire a rejuvenation gene signature/iMSC 

could allow circumventing the drawbacks 
associated with the use of ASCs

Transcriptome analysis 
by array with Platform: 
GPL10558/GSE97311

[153]

Wharton's jelly-derived 
MSCs/adult BM-MSCs and 
multipotent adult progenitor 

cells (MAPC)/N=15

MSCs from different sources 
show differences in their 
surface marker and gene 

expression profiles

Gene ontology analysis revealed that genes 
associated with cell adhesion, proliferation, and 

immune system functioning are enriched in 
WJ-MSC

Transcriptome analysis 
by array with Platform: 
GPL6244/GSE77685

[154]

Fetal Neural Stem 
Cell (fNSC)/adult 

Neuroprogenitor–Cell 
(ANPC)/adult Brain 

Perivascular Mesodermal Cell 
(aBPMC)/N=17

Understanding the "intrinsic" 
MSC population of the 

human brain

The lack of an innate neuronal but high 
mesodermal differentiation potential in aBPMC 

is of great interest for possible autologous 
therapeutic use

Transcriptome analysis 
by array with Platform: 

GPL96/GSE62505
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CONCLUSION

MSCs possess immunomodulatory properties, primarily through 
their paracrine secretions that contain anti-inflammatory molecules 
and exosomes. This makes them a potential candidate for treating 
various immune disorders. Many clinical trials have been conducted 
to investigate the use of human MSCs in treating immune-related 
diseases such as Graft-versus-Host Disease (GvHD), inflammatory 
bowel disease, multiple sclerosis, rheumatoid arthritis, type 1 
and type 2 diabetes, and systemic lupus erythematosus. They also 
have been used to regenerate bone, cartilage, musculoskeletal 
system, liver, and lung. Although MSC therapy shows potential 
as a treatment option for many pathological conditions, the 
cellular and molecular mechanisms underlying MSC-mediated 
immunomodulation are not yet fully understood. Studies have 
demonstrated various immunomodulatory changes following the 
administration of MSCs, but a clear understanding is still lacking, 
and study results are often inconsistent. This may be due in part 
to the fact that MSCs from different sources and under different 
culture conditions express different surface markers, show varying 
cytokine secretion profiles, and differ in telomere length and 
methylation patterns that control senescence and epigenetic status, 
respectively.

Meeting the minimal criteria set out by the International Society 
for Cellular Therapy (ISCT) is not enough to ensure consistency in 
the phenotype and function of hMSCs. There is often significant 
batch-to-batch variation in these cells, which can be attributed to 
differences in donor and tissue source, as well as culture conditions. 
These variations have real implications for tissue engineering and 
cell therapy, as they affect cell heterogeneity, senescence, secretome, 
multipotent potential, in vivo homing, survival, and integration 
in damaged tissues. It must be considered that MSCs grown in 
different environments will result in diverse MSC products, despite 
meeting the minimum requirements established by the ISCT. 

The polarization of MSCs toward anti-inflammatory cells due to 
exposure to pro-inflammatory stimuli diminishes inflammation 

and promotes tissue homeostasis in inflamed, damaged tissue. 
However, HLA molecules are induced by incubating MSCs with 
pro-inflammatory cytokines in vitro. While more research is 
necessary, current knowledge suggests that preconditioning plays 
an important role in balancing the immunosuppressive properties 
of MSCs with their immunogenicity. Indeed, the plasticity of 
MSCs in controlling immunoregulatory pathways involved in the 
maintenance of immune homeostasis depends on the intensity 
and complexity of inflammatory stimuli. Thus, enhanced 
comprehension of the controlling mechanisms will prepare for 
novel therapeutic approaches.

MSCs can be obtained from different adult and fetal tissues. In 
clinical research, MSCs derived from adipose tissue in adults, and 
placenta/umbilical cord delivered by fetus is commonly used due 
to their easy accessibility. However, the diverse range of potential 
sources makes it difficult to compare study results, as MSCs exhibit 
varying characteristics in vitro and in vivo depending on their 
tissue of origin. Moreover, the fact that MSCs behave differently 
depending on the local microenvironment adds to the complexity 
of understanding the immunological pathways mediated by MSCs. 
In summary, the paracrine factors released by fetal MSCs made 
them a fascinating field of research and a potential candidate for 
therapeutic applications.
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