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ABSTRACT

When the surface and subsurface floats move in the water, they emit sounds due to their propulsion engines as well
as the rotation of their propellers. One of the best methods in Underwater Automatic Target Recognition (UATR) is
to use deep learning to extract features and supervised train acoustic datasets that are used in the world’s naval forces.
In this article, to achieve reliable results by deep learning methods, we collected the raw acoustic signals received by
the hydrophones in the relevant database with the label of each class, and we performed the necessary pre-processing
on them so that they become a stationary signal and finally provided them to the spectrogram system. Next, by using
ShortTerm Frequency Transformation (STFT), the spectrogram of high resonance components is obtained and used
as the input of the modified MobileNet classifier for model training and evaluation. The simulation results with the
Python program indicate that the suggested technique can reach a classification accuracy of 97.37% and a validation
loss of less than 3%. In this research, a model has been proposed that, in addition to reducing complexity, has
achieved a good balance between classification accuracy and speed.
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INTRODUCTION

When the vessel moves in the water, it makes a sound that is
called the ship's radiated noise. Detection of vessels using the
underwater sound emitted by them is one of the most significant
and difficult issues in underwater acoustical signal processing.
UATR is a complex problem of pattern recognition. The most
important sources of sound production from vessels are the
propulsion system, propeller and hydrodynamic noise. A device
called a hydrophone received the sounds emitted by subsurface
and subsurface vessels. Hydrophones are a type of passive
acoustic receiver that converts the pressure of the sound wave
into a processable signal at the output. One of the modern
methods of automatic target recognition is the use of Deep
Neural Networks (DNNs). Supervised deep neural networks
need vast amounts of annotated training data to produce an
admirable level of performance. When the numeral of labeled
instances is low, the models learned by these supervised methods

tend to overfit the training data. Deep learning is a new subset
of machine learning that is designed to create a neural network
based on the analysis of human brain learning. The concept of
applying deep learning was proposed by Hinton. Nowadays, deep
learning has slowly become the main method in the areas of
image and speech recognition [1].

Due to the lack of high-qualitative and labeled underwater
acoustic data, as well as the high demand for researchers, it is
difficult to access samples for training neural networks. Deep
learning models can reach the highest level of accuracy, in such a
way that sometimes they perform better than humans. Deep
learning models are trained by large datasets and neural
networks with many layers. It receives the features of the lower
level in each layer, processes them, and obtains the features of
the higher level as a result. In this field, there are different
networks and architectures, among which we can mention Deep
Neural Network (DNN), Deep Belief Network (DBN), Recurrent
Neural Network (RNN), Convolutional Neural Network (CNN,
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AlexNet, ResNet, GoogleNet, etc.). Machine Learning (ML) and
Deep Learning (DL) techniques have been used to identify and
process passive and active sonar signals in order to recognize
underwater acoustic targets. To increase the security of territorial
waters and control sea traffic, the accurate and realtime
detection and classification of surface and subsurface targets
using artificial intelligence methods, machine learning, and
especially the new deep learning method, is very important and
necessary [2].

In this research, we first apply the necessary audio signal pre-
processing techniques (including windowing, filtering, noise
removal, determining the sampling rate, etc.) and then use a

Short-Time (STFT) to generate the

spectrogram of the processed acoustic signals. In the feature

Fourier Transform
extraction stage, we extracted specific features from the sonar data
to reduce false alarms and increase the recognition rate. We will
use part of the dataset for training and the rest for testing and
validating the performance of the model by using the extracted
features as the input of the classifier. In the proposed work, we
detect the 4 different classes of ships and one class of environment
noise using the MobileNet model. We train the model for 20 and
50 epochs. The work is done in a Python environment utilizing
the Keras framework and the Tensorflow backend. Through
simulations and experiments, we comprehensively verified the
performance and potential of the proposed framework.

Related work

In recent years, different neural network methods have been
used to detect and classify sonar targets. Gorman and Sejnowski
proposed the first study that used neural networks for sonar
signal recognition. They used a three layer network (with one
hidden layer) that was able to classify a test set of 104 samples
with 90.4% accuracy. Chin-Hsing et al. proposed a classification
method based on Multilayer Perceptron (MLP) and Adaptive
Kernel Classifier (AKC). The multilayer perceptron classified the
processed data and was able to achieve 94% recognition
accuracy. Dobek et al. used neural networks based on the k-
nearest neighbor method to recognize sea mines. They achieved
92.64% accuracy in this method. Williams and Galusha et al.
used convolutional neural networks to classify images obtained
in Synthetic Aperture Sonar (SAS). Yang et al. Using Deep
Belief Network (DBN) and Restricted Boltzmann Machines
(RBM), proposed a model for UATR. The results indicated that
this approach earned a classification accuracy of 90.89%. Jiang
et al. proposed a model by combining a modified Deep
Convolutional Generative Adversarial Network (DCGAN) and
the S-ResNet method to achieve reliable classification accuracy,
which was able to achieve 93.04% classification accuracy. Tian,
et al. offered a Multi-Scale Residual Unit (MSRU) capable of
constructing a deep convolutional stack network. This flexible
and balanced structure has been applied to underwater acoustic

Table 1: Description of the five classes of vessel types and noise.
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target classification and has been able to achieve a recognition
accuracy of 83.15%. Wang, et al. proposed a new separable CNN
method to detect underwater targets. The deep features are
extracted by a DWS convolutional network and classified with a
90.9% of accuracy rate. Chen, et al. suggested a technique for
detecting underwater acoustic targets, which considered the
spectrum obtained from the low-frequency analysis recording.
The proposed LOFAR-CNN method has been able to achieve a
recognition accuracy of 22.95%. Saffari, et al. Have proposed the
use of a Support Vector Machine (SVM) model for the
automatic detection of moving sonar targets. The accuracy of
recognizing targets was different for various Signal-to-Noise
Ratios (SNR). Hong, et al. Suggested a classification method
using a residual network (ResNetl18) which demonstrates a
recognition accuracy of 94.3%. Xinwei Luo, et al.

Used a new spectral analysis method to extract multiple acoustic
features. The accuracy of recognition obtained in this method is
96.32%. Zeng, et al. introduced a new model by integrating
ResNet and DenseNet neural networks, which was able to
classify targets with 97.69% recognition accuracy. Song et al. by
combining the Low-Frequency Analysis Recording (LOFAR) and
Envelope Modulation On Noise (DEMON) and CNN network
have been able to achieve 94.00% recognition accuracy. Chen et
al. Proposed a method based on a Bi-Directional Short-Term
Memory (Bi-LSTM) to discover the features of a time frequency
mask to extract distinctive features of the underwater

Audio signal. Sheng and Zhu proposed an underwater acoustic
target detection method based on a UATR transformer to detect
two classes of targets, which can capture global and local
information on spectrograms, thereby improving the performance
of UATR. The maximum recognition accuracy in this method

was 96.9% [3].
MATERIALS AND METHODS

Dataset

There is a database for underwater acoustics researchers which
contains types of sounds emitted from ships called ShipsEar (a
dataset with acoustic recordings of 90 records from 11 ship and
boat types this
hydrophone with a nominal sensitivity of 193.5 dB against 1

and background noise). In recorder, a
V/1 uPa and a smooth response in the frequency range of 1 Hz
to 28 kHz is used. For each recording, the position of the
hydrophone was determined in such a way as to record the
sound of the target ship with the best possible quality and to
minimize the sound produced by other ships. The 11 vessel types
are merged into four experimental classes (based on vessel size)
and one background noise class, as shown in Table 1.

Class name

Details

Class 1

Fishing boats, Trawlers, Mussel boats, Tugboats, and Dredgers

Int ] Swarm Evol Comput, Vol.14 Iss.2 No:1000428
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Class 2 Motorboats, Pilot boats, and Sailboats
Class 3 Passenger ferries

Class 4 Ocean liners and Ro-Ro vessels

Class 5 Background noise recordings

Figure 1 displayed different classes of ships consisting of the
fishing trawler, pilot boat, passenger ship, and ocean liner.

{0 e
Figure 1: Four classes of ships. (a) Fishing trawler, (b) Pilot boat,
(c) Passenger ship, and (d) Ocean liner.

Pre-processing

The first step in audio data preprocessing is to remove
environmental and diffusion noises. Most of these noises are in
the frequency range of 3 kHz, although some noises up to the
range of 10 kHz have been received. Here, a median filter and
Finite Impulse Response (FIR) Low Pass Filter (LPF) is used to
eliminate these noises [4].

x(n) =s(n)+d(m)
d(m) =2 (I (n)*S(n—T,))g, (7))

(6]

X(n) is the input signal, s(n) is the sum of the clean signal, and
d(n) is a noise signal. Ty represents the event time of the kth
temporary background noise. The impulse response is defined
with hi(n) and the amplitude of the k™ noise is denoted with
gkn). An ideal lowpass filter is expressed by the following
equations:

o I[Lodalza
#(ef) - Ho, chc‘qg )

The underwater acoustic signal is a dynamic and non-stationary
signal. To solve this problem, the acoustic signals will be
converted into small frames by Hamming window. In terms of
the rectangular window transform Wg(w),

Hamming window is shown by the following equations:

Wy (m) =M.asineM (@)

3)
Wy (@) =aly (@) + V(@ =0, ) + f(@+ D)
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Where M is the window length in samples and osincM(w)
denotes the aliased sinc function. Using the inverse transform of
the above equation, the Hamming window is determined by the
following equations:

W, = awy(n)+ fe " o, () + e’ o, (n)

2n “
@, (m) = mx(n)[a + Zﬁcm[vj]

The acoustic data in dataset has a sample rate of 52.734 kHz.
Now, these data are re-sampled at 26.367 kHz.

Down sampling a sequence c[n] by a factor D is an operation
that retains one out of every D element of c[n], Thus, the output
dln] of a factor-D down sampler is given by the following
equation:

d[m]:c[mD] . d[m] :nzac[n]h[mD—n] 3)

A sequence c[n] is passed through a filter h[n] before down
sampling by D. The h[n] with a factor-D down sampler is shown
by the following equation:

h[n]:%smc(%) (6

One way to obtain the transformed output from the input is
expanding the frequency response of the incoming signal in the
range [~m, 7 by a factor of D and then creates aliases with
spacing T. If the size of each data becomes half of its original
size, the generated model will be faster. The chart of the pre-
processing stage is shown in Figure 2.

ot
FIR Lowpass Filter

i

Segmentation

v
Hamming Window

v

Down Sampling

Figure 2: Block diagram of underwater acoustic signal
preprocessing.
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Spectrogram

To extract the features of acoustic signals based on frequency, it
is necessary to divide the signal into its frequency values using
the Fourier transform. There is a method for calculating the
features of an audio signal that extracts the frequency values
along with the time. This visual display of audio signal
frequencies over time is called a spectrogram. The Fourier
transform is suitable for determining sinusoidal components of
a time domain signal x(t). A simple way to overcome the
problem of using the fourier transform is to use basis functions
to extract features in both the time and frequency domains.
Short-Time Fourier Transform or STFT is defined as the
following equation:

EF(t,.f:h)= J-jlc(u)h(ui) e dy ©)

Where h(t) is a short time analysis window localized around t=0
and f=0. The spectrogram is given by the following equation:

S.(t.f)= Tx(u)ﬁ(u—r)e"“f" du ®8)

Figure 3 shows spectrogram images related to underwater acoustic
signals emitted from 4 classes of ships.

() (D)
Figure 3: Spectrograms of the acoustic signals emitted from 4
classes of ships.
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faster execution speed, and acceptable accuracy was formed.
One of the problems of using standard convolution is its high
calculations, Therefore, another type of convolution layer called
Depthwise Separable (DWS) convolution is used, which requires
fewer calculations. Standard convolution in the discrete time
domain is given by the following equation:

v [n] = x[n] *h [n] :kix[l(] .h[n 7k] ©)

Where x[n] is input signal, h[n] is impulse response, and y[n] is
output. - Denotes convolution. 2D convolution is represented as
follows:

¥ [m,n] = x[m.n] *h [m. n] :,Z i x[i,j]./l [m —i. nfj] (10)

s

Depthwise separable convolution uses two layers called Depthwise
Convolution (DW) Pointwise Convolution (PW) to reduce
calculations. a k x k kernel is utilized in the depthwise convolution
layer and then, the pointwise convolution layer uses m kernel
numbers ¢ x 1 x 1 to generate new feature maps. Mathematical
calculations of separable Convolution 2D are defined as follows:

y[m,n] =h [m, n] *x[m,n] :Ii’ih [i, j].x[m 71',717/'] 11

The high-cost layers at the beginning and end of the network are
redesigned and a new nonlinear function, h-swish, is used
instead of the ReLU nonlinear function. Hard swish or h-swish
is the non-inear function that improves the accuracy of neural
networks which are represented as follows:

mt'isiz[x]:x*é‘(x) (12)

. ReLU6(x+3)

hardSwish[x]=x
6

(13)
Figure 4 shows the performance of standard convolution and
depth separable convolution. In the design of the MobileNet
network.

MobileNet

After the emergence of the AlexNet convolutional network and
winning the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) competition, the use of convolutional
neural networks has increased in the domain of computer
vision. To use deep neural networks in systems with limited
processing power such as small computer systems and mobile
phones, the MobileNet neural network with fewer parameters,
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Figure 4: Comparing the processing of traditional convolution

and depth wise separable convolution.

The DW convolution filter performs a single convolution on
each input channel and the PW convolution filter, combines the
DW convolution output linearly with a 1 x 1 kernel, as shown in
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Figure 5. In the first layer, a standard convolution layer is
considered and stride is adjusted in the first layer of convolution
by 2. In the next layers, all layers are depthwise separable type
convolution [4,5].

Input
224x224x3 ise Separable C:

Layer
1024
Output
5 Classes

PWI13 PW14

Average Poling ‘
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Convoluti
onyaion Convolutio

D ise S C
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Convolution Convolution L3 Gonvolution

Figure 5: Processing of different layers of mobilenet network in the
proposed method.
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The filter size of all DW convolution layers is 3 x 3. After that, 2
layers with 32 filters and then a PW convolution layer with
64 filters are considered. Then 9 layers with 128 filters are
placed. In the end, there will be 2 layers of 1024 filters. We
used the Softmax classifier at the end of the model structure.
The model structure is shown in Table 2 and the diagram of
the model is shown in Figure 6.

Table 2: Light-weight modified mobilenet structure used for image classification.

Type/Stride/Activation Filter shape Input size
Conv 2D/s2/h-swish 3Ix3x3x32 224 x 224 x 3
Conv dw/s1/RelLU 3x3x32dw 112 x 112 % 32
Conv pw/s1/ReLU 1x1x32x64 112 x 112 % 32
Conv dw/s2/RelLU 3 x3x64dw 112 x 112 = 64
Conv pw/s1/ReLU 1x1x64x128 56 x 56 x 64
Conv dw/s1/ReLU 3x3x 128 dw 56 x 56 x 128
Conv pw/s1/h-swish 1 x1x128 %256 28 x 28 x 128
Conv dw/s1/h-swish 3 x3x256dw 28 x 28 x 256
Conv pw/s1/h-swish 1x1x256x512 14 x 14 x 256
Conv dw/s1/h-swish 3x3x512dw 14 x 14 x 256
Conv pw/s1/h-swish 1x1x512 %512 14 x 14 x 512
Conv dw/s1/h-swish 3x3x512dw 14 x 14 x 512
Convl10 pw/s1/h-swish 1x1x512 %1024 7x7x512
Convll dw/s2/h-swish 3 x3x 1024 dw 7x7x1024
Convll pw/s1/h-swish 1x1x1024 x 1024 7 x7x1024
Avg Pool/s1 Pool 7 x 7 7x7x1024
FC 1024 x5 1x1x1024
Softmax Classifier I1x1x5

Int ] Swarm Evol Comput, Vol.14 Iss.2 No:1000428
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Figure 6: Overall block diagram of the proposed method.

RESULTS AND DISCUSSION

Experimental setup

In this research, the data is resampled at 26.367 kHz. Each
sample is split into multiple segments to be processed for input
to the model’s algorithms. Considering the features of passive
sonar audio signals, computing resources, and Classification
accuracy, each signal is divided into 4-second segments. The
features extracted from the sonar dataset in the time frequency
domain are accumulated in the form of spectrogram images.
These spectrogram images are utilized as input to the suggested

Table 3: Confusion matrix for image classification.
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classifier model. By segmenting and calculating the frequency
spectrum, many 5671 spectrogram images are obtained in the
dimensions of 224 x 224 x 3, which belong to 5 defined classes
of types of vessels. 70% of this data was used for training, 20%
for validation, and 10% for testing. The evaluation of algorithms
is estimated with four parameters (accuracy, precision, recall, and
Fl-score). The evaluation equations are calculated through the
following equations [6].

True Positive Rate= —2 (14)
TP+FN
FP
False Positive Rate =————— (15)
IN+FP
True Positives + True Negatives
Accuracy = Tl osies + True Teganves (l6)
TP+IN+FP+FN
True Positives
precision = rueTostves a7
True Positives + False Positive
Recall = [uelosiftve (18)

True Positive + False Negative

Fl- Score=2x Preision x Recall (19)
Preision+ Recall

Using the confusion matrix, the reliability and accuracy of the
classification in different classes are determined. In the bottom
part of Table 3, the confusion matrix information is shown [7].

Actual value

True False

Predicted value True

True positive (Correct detection) False negative (False detection)

False

False positive (False alarm) True negative (Correct detection)

We train the designed model for training data with 64 batches
and 20 or 50 epochs. In this research, four models based on
deep learning (standard CNN convolutional network, VGG
network, ResNet network, and LeNet) and their popular use in
underwater acoustic classification have been selected. The
results obtained from the proposed method are compared with

these methods [8].

Experimental results

The proposed classifier model was built in Python utilizing a
Keras sequential model with a Tensorflow backend and is
trained in 20 and 50 epochs with a batch size of 64. The
recognition accuracy and validation loss of the model have been
obtained for both the training and validation datasets and their
results are shown in Figure 7.
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Figure 7: Plot of loss and classification accuracy of the proposed

model. (a) 50 epochs and (b) 20 epochs.

The results obtained in Figure 7 show that the classification
accuracy increases with the increase in the number of epochs.
This means that in larger epochs, more accurate and meaningful
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features are extracted locally, which enables the network to
recognize the target with better accuracy. The confusion matrix
for the test dataset sample is shown in Figure 8. The diameter of
the matrix represents the results of the recall or the true positive
rate, which expresses the correct performance of the model
based on the accurate classification of different classes of the
dataset. As shown in Figure 8, by increasing the number of
iterations, the recognition accuracy increased and different
classes of the dataset were correctly classified [9].

OPEN @ ACCESS Freely available online

LeNet and CNN models is almost 150 minutes, while that of
VGG is 180 minutes. Consequently, their accuracies are lower
than the proposed model with a longer training time [10].

o

Figure 8: Confusion matrix for 5 label classification. (a) 50

epochs and (b) 20 epochs.

The comparative chart of the correct recognition of the test data
set related to different classes by the Receiver Operator
Characteristic (ROC) curve is shown in Figure 9.

Figure 10: The classification accuracy of spectrogram and
different algorithms. (a) LeNet (70%), (b) VggNet (78%) and (c)
CNN (87%).
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Figure 9: The classification evaluation for 5 classes of the target

(@) 50 epochs and (b) 20 epochs.

Bach, Vu, and Nguyen after obtaining spectrogram images of
the ShipsEar dataset, used them as input in their proposed
model. They selected 100 epochs for training the model and
obtained different results using the LeNet, VGG, and CNN
algorithms. The classification accuracy of LeNet is only 70%, as
shown in Figure 10a, the accuracy of VGG is 78%, as shown in
Figure 10b, and CNN obtained the classification accuracy of
87%, as shown in Figure 10c. The elapsed time for training of

The results of acoustic signal recognition accuracy for all
methods are given in Table 4. Accornig to results, the proposed
model has achieved 97.37% accuracy, which has outperformed
the standard CNN, VGG, ResNet, and LeNet, but it is slightly
less than the accuracy obtained in Res-DensNet model with
96.79% accuracy. Also, the precision of 98.37%, recall of
99.04%, and Fl-score of 98.84% are other results obtained. By
analyzing the results acquired in the evaluation criteria, it can be
noticed that the proposed method for accurately detecting the
targets of surface and subsurface vessels based on the acoustic
signals received from them, compared to other standard
methods, has a relatively more appropriate and reliable
performance in automatic target detection with an increase It
speeds up performance and reduces computational complexity

[11-15].

Table 4: Classification result of different techniques in percentages for target recognition.

Method Accuracy Precision Recall F1-Score
LeNet 0.7 0.78 0.85 0.77
CNN 0.925 0.9475 0.996 0.8765
VGG 19 0.9302 0.931 0.9322 0.9284
ResNet 0.8812 0.8708 0.9218 0.882
Res-DensNet 0.9679 0.9833 0.99 0.98
Proposed model 0.9737 0.9837 0.9904 0.9884

Int ] Swarm Evol Comput, Vol.14 Iss.2 No:1000428
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Table 5 shows the computational efficiency of the proposed
model according to the number of operations and calculation
time performed in each epoch and all epochs. Investigating the
used algorithms shows that the number of operational
parameters of the suggested technique is far more smallish than
the models based on CNN, VGG, Residual, and LeNet. This is

due to the use of the average-pooling method and the removal of

OPEN @ ACCESS Freely available online

additional pointwise and depth wise convolutions in the end of
the proposed algorithm. Regarding the duration of training and
validation calculations, the time spent by the suggested approach

is less than the other models [16-18].

Table 5: Comparing the number of parameters and the duration of calculations in different deep learning algorithms. The best timing

in each column is shown in bold.

Method Number of parameters (million) Computation time of each epoch  Computation time of all epochs
(second) (minute)

LeNet 36 mil 60.5 sec 75 min

CNN 5.8 mil 18.5 sec 21 min

VGG 19 20.2 mil 49.5 sec 62 min

ResNet 23.8 mil 58.2 sec 65 min

Proposed model 2.2 mil 12.6 sec 18 min

Considering the effect of the training epoch in reducing the
validation loss and increasing the model recognition accuracy, in
this research, different epochs (epoch=20, 50) were used for data
training.

The results displayed in Table 6 show that in training with 50
epochs, the classification accuracy has improved and the
evaluation loss has decreased [19].

Table 6: Accuracy and loss results of training models in various epochs.

Method Num of epochs Accuracy Loss
CNN 20 90.45% 11.5%
50 92.5% 10.4%
VGG 19 20 91.81% 9.6%
50 93.02% 8.2%
ResNet 20 88.01% 12.6%
50 88.12% 10.5%
Proposed model 20 97.13% 3.2%
50 91.37% 2.1%

Gradient descent is an optimization method that iteratively
updates the weights. If the network is trained for a few epochs, it
will result in under fitting the data. This means that the model
cannot capture the underlying trends in the data. When the
number of epochs is improved, the network reaches an optimal
state that achieves the maximum accuracy in the training set.
Now, if the number of epochs increases drastically, it leads to
overfitting of the data and the generalization of the model to
new data not accomplished correctly. This means that the
network does not reflect the reality of the data. Therefore, to
have the best performance, the number of epochs in network
training cannot be determined in advance. This is a hypermeter

Int ] Swarm Evol Comput, Vol.14 Iss.2 No:1000428

that needs to be adjusted heuristically. According to the results
of Table 6, by increasing the training epoch from 20 to 50, in all
models, a relative improvement in training accuracy has been
achieved and the validation loss has decreased [20].

In the performance comparison, the results of the classification
tests showed that the accuracy of the proposed methods is
significantly better than the traditional deep learning techniques
for the classification of 5 targets, and the recognition accuracy
performance of VGG is marginally better than the MobileNet
model. Also, the accuracy of the proposed method for
underwater acoustic target recognition compared with other
introduced methods in Table 7.
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Table 7: Omparison of the recognition accuracy of the proposed model and other existing methods.

Input Methods Accuracy
Spectral envelope normalized Convolutional neural network 0.904
Wavelet transform (Average power spectral Multilayer Perceptron (MLP) 0.94
density)

Wavelet packets CNN+k-nearest neighbor 0.9264
Synthetic aperture sonar imagery Deep convolutional neural network 0.903
Competitive deep-belief networks Support Vector Machine (SVM) 0.9089
Spectrum image DCGAN+S-ResNet 0.9304
Spectrogram Multi-Scale Residual Unit (MSRU) 0.8315
Waveform Separable convolutional neural network 0.9091
Low-Frequency Analysis Recording (LOFAR) Convolutional neural network 0.9522
Micro-Doppler sonar Support Vector Machine (SVM) 0.9852
Fusion features Resnet-18 0.9431
Multi-Window Spectral Analysis (MWSA) Resnet 0.9632
Spectrogram Resnet and densNet 0.9769
DEMON and LOFAR Convolutional neural network 0.94
Time-frequency diagrams Bidirectional short-term memory (Bi-LSTM) 0.97
Acoustic spectrograms Convolutional neural network 0.969
(Spectrogram) (Proposed method) VGG19 0.9857
(Spectrogram) (Proposed method) MobileNet 0.9737

As shown in the Table 7 above, compared to the existing
methods for performing UATR, the proposed models have high
classification accuracy, which can increase the processing speed
of target recognition and avoid wasting time in model training
calculation operations. In addition, in this research, due to the
use of the average integration method at the end of the layers of
the convolutional algorithms of the proposed model, instead of
the fully connected layer, it has been tried to reduce the
complexity and increase calculations. Especially in the
MobileNet network, due to the removal of additional point and
depth convolutions at the end of the algorithm, the duration of
training and evaluation calculations spent by the proposed
method based on the
mentioned convolution methods. The evaluation results of the

is less than the classifier models
developed model show that the presented model has the

necessary efficiency to recognize and classify different classes of
ships.
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CONCLUSION

In this research, we presented a new approach for underwater
acoustic target recognition, using the deep learning method
(MobileNet) with modified mechanisms at the end of the
network in the ShipsEar dataset. To use sonar acoustic data in
the proposed model, after performing the necessary pre-
processing on them, it has converted them into spectrogram
images. To speed up the stages of recognition and classification
of targets by the proposed model, it has used the designed
convolutional network of MobileNet with the least number of
parameters. We demonstrated that using this network can
simultaneously extract the time and frequency features of the
data by producing spectrograms according to the acoustic data
emitted from the ships. We trained the classifier and analyzed its
generalization using sonar dataset. The classifier demonstrated
satisfactory performance in classifying and recognizing target
signals with rare false alarms. In performance comparison, the
accuracy of the proposed method has remarkably outperformed
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standard deep learning techniques for the task of 5-target
classification and improved calculation speed and validation
loss. Considering the classification accuracy of 97.37% in the
proposed method, it can be concluded that this method has
achieved advanced accuracy. Regarding the performance of the
models, it can be seen that with the increase of layers and
convolutional parameters, the accuracy of the model improves
negligibly, but the speed of model calculations decreases. In this
case, we need powerful hardware to train the model. This
research has intensively tried to reach a proper trade-off between
the accuracy and speed of the networks so that with the relative
improvement of the classification accuracy, they have noticeably
reduced the number of parameters and the number of
calculations. Although in some models, increasing the number
of parameters can lead to higher accuracy; it reduces the speed
of performance. The proposed models presented in this paper
will run on portable devices and mobile phones. The proposed
method aided in the Sonar system's acoustic target classification
and recognition.
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