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ABSTRACT

We apply new empirical methods from chaos theory, aimed at dealing with stochastic chaos, employing adaptive topological 
artificial intelligence and topological data analysis to sunspots’ data for attractor reconstruction analysis and dynamical process 
decomposition. Applying these methods to sunspots’ data we uncover not one but two low-dimensional chaotic attractors, a 
first dominant attractor that is linked to a strongly persistent process with self-organized criticality and multifractal signatures, 
and a second chaotic attractor that exhibits intermittent turbulence and anti-persistent multifractal signatures, also present 
is a third process with an autoregressive moving average structure and an Independent and Identically Distributed (IID) 
noise component. In this way, the main emergent dynamics associated with the sunspots’ data are researched in detail down 
to the IID noise component.

Keywords: Adaptive topological artificial intelligence; Machine learning; Chaos theory; Synergetics; Stochastic chaos; Self-
organized criticality

INTRODUCTION

Sunspots result from localized rises in solar magnetic activity 
leading to a decrease in the surrounding atmospheric pressure of 
these localized regions and a decrease in temperature, the strong 
magnetic field effectively inhibits the flow of hot gas from the 
sun’s interior to the surface leading to a localized decrease in the 
relative temperature of these regions which show up as what we 
call “sunspots”, comprised of a localized darker region in the sun’s 
photosphere, called the umbra, surrounded by a lighter region, 
called the penumbra [1,2].

Sunspots are of particular interest not only for understanding solar 
dynamics but also because the interaction between the localized 
high intensity magnetic field and the plasma may lead to mass 
ejections and solar flares occurring near sunspots, with potential 
consequences for space-based assets and Earth’s communications 
[1-4].

Two dynamics have been identified as present in the sunspots’ data, 
one is Self- Organized Criticality (SOC), which is characterized by 
power law scaling in the power spectra and by power law scaling 
in the frequency of events’ distributions, the other dynamics 
identified in sunspots’ data is low-dimensional chaos [5-10].

While the early theory of SOC conjectured that chaos could not 
lead to SOC, this conjecture was found not to hold as shown in 

[11], where chaos was identified in a self- organized critical system, 
other works since then have showed evidence both in theoretical 
models and in empirical works of the markers and process of chaos-
induced SOC, in both high-dimensional and low-dimensional 
attractors [11-16].

A formal point, regarding the mathematical models, needs, 
however, to be raised, specifically, flows described by differential 
equations cannot lead to SOC because the trajectories of the 
state variables exhibit smooth differentiable curves, while fractal 
and multifractal signals are not differentiable, which means that, 
mathematically, fractal and multifractal signals, associated with 
chaotic dynamics, either results from discrete time equations, that 
is, nonlinear maps or, in the case of continuous time models, it can 
only occur for stochastic chaos, which means that one would need 
to work with stochastic differential equations.

Empirically, chaos-induced SOC in complex systems corresponds 
to dynamics where the markers of SOC result from the emergent 
chaotic dynamics itself [15,16].

In complex systems that are open, nonlinearly interacting and 
sustained far-from- equilibrium, attractors with different dynamics 
can emerge as a consequence of self- organization far-from-
equilibrium in the thermodynamic sense, in this case, dynamical 
attractors can emerge at the macro level, with specific geometric 
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systems’ dynamics: To emergent chaotic attractors there corresponds 
an irreducible dimensional order in the systems’ dynamics so that 
changes in attractor dimensionality can only occur as a structural 
change in that dimensional order. The number of order parameters 
are thus as structural as the fractal dimension and Lyapunov 
exponents of strange chaotic attractors.

In this way, as comes out of the synergetics research on chaos 
reviewed above, strange chaotic attractors are fractal geometric 
structures in a geometric space spanned by an irreducible number 
of emergent macro-level degrees of freedom, irreducible in the 
sense of Haken’s slaving principle [17].

Finding these attractors in empirical data such as sunspots’ numbers, 
without knowing the dynamical equations and only having 
available a signal falls in the context of attractor reconstruction. 
The main method employed, when only a time series is available, is 
delay embedding, in this case, one must find an appropriate lag and 
dimension and build, from the corresponding series, a sequence of 
tuples where each element of the tuple contains lagged values of 
the series and the number of elements of the tuple corresponds to 
the embedding dimension.

The main problem for attractor reconstruction is to find an 
embedding lag and dimension that allows for the reconstruction 
of the attractor. Ideally the embedding dimension should allow 
one to uncover the main topological and geometric order of the 
attractor and correspond to the number of order parameters, in 
[15,16] Topological Data Analysis (TDA) employing adaptive 
Artificial Intelligence (AI) with topological machine learning and 
using a sliding window for relearning was employed in order to 
find an embedding that would allow for attractor reconstruction, 
this AI system corresponds to what in [15,16] is called an 
adaptive topological agent, used to drive the process of attractor 
reconstruction and the subsequent analysis of the chaotic dynamics.

Methodologically, the current work is developed within the 
context of Smart Topological Data Analysis (STDA) involving a 
combination of methods from machine learning, chaos theory and 
topological data analysis.

The main point is that emergent attractors have specific geometric 
and topological signatures that can be exploited for prediction, 
in particular, when, underlying a time series, there is a dynamical 
attractor, this underlying “hidden” attractor can be uncovered 
by finding the embedding lag and dimension that allows for 
an adaptive topological AI system to find the link between the 
topological structure of the attractor and the time series.

In the case of chaotic attractors, the topological order is linked to a 
periodic skeleton that is associated with the attractor and that leads 
to recurrence signatures that can be used for prediction.

The search for embedding parameters, in this context, corresponds 
to a search for the attractor reconstruction that leads to the 
capturing of the topological order that allows for the adaptive AI 
system, equipped with a topological machine learning unit, to 
predict the target series.

In this way, the reconstruction of the attractor is achieved by 
finding the embedding, from a set of alternative embeddings, that 
best captures the topological order allowing for the prediction of 
the target series.

Now, when searching for the dynamics behind a specific signal, 
the main assumption is that the dynamics factors into a sum of a 

and topological properties, sustained by the micro level dynamics, a 
phenomenon that has been extensively addressed within synergetics 
[6,17].

Our main point of the present work, while focused on the 
sunspots’ data, is a methodological one, namely, to address the 
need for research beyond a reconstructed attractor when dealing 
with chaos in empirical research involving complex systems, since 
such systems can exhibit multiple emergent attractors and complex 
noise processes for the same time series, in particular, if fractal or 
multifractal signatures are found in the residuals after a filtering 
out a chaotic attractor, one must research whether these signatures 
are induced by another underlying chaotic dynamics or are the 
result of a stochastic process characterized by fractal or multifractal 
scaling.

In the case of emergent strange chaotic attractors, either low or high-
dimensional, the phase space dimensionality for these attractors 
corresponds to a number of emergent macroscopic degrees of 
freedom that can be addressed as macro level order parameters in 
Haken’s sense [17].

While the emergence of low-dimensional chaotic attractors as 
dominant in an open complex system’s dynamics constitutes an 
example of Haken’s slaving principle, there is a specific feature of 
chaos that is important to consider, indeed, the principle no longer 
holds with respect to those lower number of degrees of freedom 
themselves, this point is addressed by Haken in [17], when the 
author recognizes that, while the Lorenz equations result from the 
slaving principle, one can no longer apply that same principle in 
the chaotic regime for the Lorenz equations themselves.

In this case, Haken identified that, when the steady-state solution 
for these equations becomes unstable, there are two unstable 
modes and one stable mode, however, in the chaotic regime, the 
stable mode is destabilized and cannot be slaved so that the slaving 
principle fails with respect to those equations, a point argued and 
demonstrated by Haken in [17].

This is a major point that has two implications regarding the 
emergence of chaotic attractors in complex systems, the first 
implication is that there is an emergence of a few macroscopic 
“order parameters” that are effectively sustained by the system’s 
dynamics, and that correspond to the number of active macroscopic 
degrees of freedom.

The second implication is that there is a limit to the adiabatic 
reduction method employed in synergetics, namely, the emergent 
order parameters, associated with the chaotic attractor, are 
irreducible with respect to the above-mentioned adiabatic 
reduction method, leading to a failure of the slaving principle’s 
methodological application to the emergent active degrees of 
freedom associated with the chaotic attractors themselves.

Thus, while an emergent low-dimensional chaotic attractor in 
a complex system’s dynamics can be addressed in the context of 
Haken’s principle as an example of that principle, a point made by 
Haken in [17] and also argued in [6] in regards to the emergence 
of a chaotic attractor in sunspots’ dynamics, Haken’s analysis of 
chaos in [17], as reviewed above, shows that the dimensionality of 
chaotic dynamics, in terms of number of emergent macroscopic 
order parameters that span the geometric space for the attractor, 
is irreducible.

The application of the conceptual and methodological basis of 
synergetics to chaos leads to a major point of chaos regarding 
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into its two attractors plus a stochastic process with an ARIMA 
component and IID residuals, so that the final evidence is that 
we uncovered the main dynamical components down to the point 
where no further low-dimensional deterministic components are 
left and are able to confirm the presence of stochastic chaos in the 
sunspots’ dynamics, furthermore, all of the markers of SOC are not 
found in the stochastic component but, instead, in the chaotic one, 
which supports the hypothesis of chaos-induced SOC.

Arguably, in general, the analysis should only stop, as shown in the 
present work, when a final IID component is found, which means 
that we have captured all the major elements that drive a specific 
dynamics.

The work is divided into three sections. In Section 2, we review 
the materials and methods. In Section 3, we present the results for 
the sunspots data. In Section 4, we conclude by reflecting on the 
methodological aspects of the article and their implications for the 
empirical methods of chaos theory.

MATERIALS AND METHODS

The dataset on the sunspot counts’ time series that we use is from 
the sunspots’ data from the World Data Center SILSO, Royal 
Observatory of Belgium, Brussels, the specific data is the daily total 
sunspot number. The period that we selected for analysis is from 1 
January, 1900 to 31 December, 2023.

For signal analysis of the series, we begin by employing analyses 
directed at identifying markers of SOC. In this way, we apply 
R/S analysis in order to characterize the signal’s memory and 
persistence pattern. The R/S analysis estimates the Hurst exponent 
which measures the persistence of a series [18,19].

Conjointly with R/S analysis, we employ spectral analysis which 
allows us to identify the possible presence of power law scaling 
in the power spectrum, reinforcing the results from R/S analysis 
in the identification of the classical markers of Self-Organized 
Criticality (SOC).

After identifying the markers of SOC related to power law 
signatures in the power spectrum, which is a major classical feature 
of SOC, we turn our focus to the statistical distribution of the time 
series. In this case, we look at the cumulative distribution function 
and try to identify power law scaling in the distribution.

While, theoretically, SOC involves a strict power law scaling in 
event size distribution, empirically, SOC can still be considered to 
be present if the power law scaling is the dominant structure of 
the statistical distribution. However, when chaotic attractors are 
present, we need to find if both the power law scaling and any 
deviations from that scaling either at the low frequency of events or 
at the high frequency of events can be linked to the attractor itself, 
if so, then the distribution’s shape both with respect to the power 
law scaling and its deviations are structurally related to the chaotic 
dynamics.

In the context of stochastic chaos, power law scaling in distributions 
can occur due to the features of the attractor, even if the original 
noise process does not follow a power law structure. We will see 
this point specifically in the current work for sunspots, since the 
IID noise process does not exhibit a power law scaling in the 
distribution, but the long-wave dominant attractor does exhibit 
such a scaling. Thus, the distribution and, as we will see, the power 
spectrum signatures are related to this strongly persistent long- wave 
dominant attractor, which means that we uncover direct evidence 

deterministic component plus a random noise term. In this way, 
when chaotic attractors are found, the assumption is usually that 
the remaining dynamics is noise.

In the present work, we follow a different route, our main point is 
that once an attractor is found one should study the corresponding 
residuals’ dynamics in order to characterize it. Working from 
the sunspots’ data this approach led us to uncover not one low-
dimensional chaotic attractor but two low-dimensional chaotic 
attractors plus an Autoregressive Integrated Moving Average 
(ARIMA) component with a final stochastic residual that is 
indistinguishable from IID noise.

The first attractor, which is dominant, is linked to the long-wave 
sunspots’ dynamics and, as we show, is responsible for the major 
SOC markers in the sunspots’ data, including a power law scaling 
in the power spectrum and in the frequency distribution and a 
multifractal scaling in the signal, with strong persistence.

The topological order of this attractor, which has a clear fractal 
dimension, contains exploitable topological information that 
allows for an adaptive topological AI system equipped with a k 
nearest neighbors’ learning unit, to predict more than 80% of the 
variability of the sunspots’ number series.

In a single decomposition approach, one would conclude that a 
strange chaotic attractor was present as “the” dynamics associated 
with the sunspots, with the remaining residuals being assumed as 
corresponding to noise.

Such an approach would not uncover further structure in the 
sunspots’ dynamics, namely the second chaotic attractor would 
be left undiscovered, a discovery that effectively shows that the 
conjecture that the residuals correspond to a noise process is 
incorrect, namely, as we will find out those residuals are in fact 
characterized by a noisy chaotic component, therefore, we are, in 
fact, dealing with stochastic chaos.

Therefore, using the adaptive topological agent’s predictions as a 
filtered signal, we characterize in more detail the main attractor 
responsible for the sunspots’ long-wave dynamics and then we study 
the residuals from the adaptive agent’s predictions, to research in 
detail the dynamics of that which was not captured by the adaptive 
agent in terms of exploitable topological order.

Decomposing the embedded trajectory of the sunspots’ numbers 
in the predicted and the residuals’ tuples we find that the main 
properties of the long-wave attractor are kept in the embedded 
trajectory from the adaptive topological agent’s predictions, but 
then studying the resulting residuals’ trajectory in phase space we 
uncover the presence of another fractal attractor with positive but 
lower Lyapunov exponent with multifractal signatures characterized 
by anti-persistent dynamics and intermittent turbulence. 

This second attractor actually compensates for the high persistence 
of the long- wave dynamics’ attractor and leads to a lower persistence 
than what would hold if only the long-wave attractor was present.

Researching the properties of this second chaotic attractor, which 
is a noisy attractor, we apply wavelet denoising and research the 
properties of the embedded denoised trajectory, which reinforces 
the findings of chaos in sunspots’ data [6-10].

By studying the filtered-out noise, we find the presence of a final 
Auto Regressive Integrated Moving Average (ARIMA) (1,0,1) 
process with Independent and Identically Distributed (IID) 
residuals. This allows us to decompose the sunspots’ dynamics 
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The next step is the attractor reconstruction method. As reviewed 
in the introduction, the conceptual structure of synergetics proves 
operatively effective when faced with evidence of emergent chaotic 
attractors in complex systems’ dynamics. Indeed, synergetics 
provides for a conceptual basis and framework for the main 
methodology of attractor reconstruction and, in particular, the 
topological methods employed in the current work, when dealing 
with complex systems’ dynamics.

Namely, in complex systems that are thermodynamically open and 
far-from- equilibrium, with large number of degrees of freedom, 
possibly even fluctuating degrees of freedom, finite-dimensional 
attractors can emerge with dynamics with specific geometric 
and topological properties supported by these systems’ collective 
dynamics, namely, the number of dimensions for these attractors 
match a number of emergent macrolevel active degrees of freedom, 
corresponding to order parameters [17].

In such contexts, the microscopic level that has a large, possibility 
even fluctuating number of degrees of freedom, exhibits dynamics 
that sustains the macrolevel dynamics and the system can be 
addressed and characterized by that macrolevel dynamics. In 
synergetics’ conceptual framework, this corresponds to Haken’s 
slaving principle [17].

This is a self-organization dynamics that leads to a synergetic 
sustaining of a macroscopic dynamics that is characterized by a 
finite number of degrees of freedom corresponding to these active 
macroscopic variables, with the microscopic dynamics sustaining 
the high-level dynamics in the form of a feedback loop that 
effectively locks in the lower level’s dynamics in the sustainability 
of the higher-level dynamics to the point that one can address 
the system’s dynamics from these emergent macroscopic order 
parameters [17].

Indeed, this phenomenon of self-organization, leading to emergent 
order parameters, allows the description of the system’s dynamics 
in terms of these collective variables without having to describe in 
detail the low-level dynamics, which is the main point of Haken’s 
principle and methodology [17]. 

The emergence of chaotic attractors in complex systems occurs 
as such an example of self-organization, therefore, constituting 
an example of Haken’s slaving principle, however, as reviewed in 
the introduction, the dimensionality of the emergent attractors 
is irreducible violating the slaving principle when it is applied to 
these attractors themselves, that is, one cannot further reduce 
the number of emergent degrees of freedom associated with the 
macrolevel dynamics to a smaller number, implying that the 
emergent collective degrees of freedom as order parameters, as 
well as the fractal and topological structuring are a proper of these 
emergent attractors.

Now, empirically, when one only has a time series of observations to 
work with, uncovering the order parameters and reconstructing the 
emergent attractor’s dynamics is dealt with using delay embedding 
methods and studying the qualitative properties of the emergent 
dynamics, employing that delay embedding.

The main point is that the time series is actually a function of the 
order parameters plus a noise term, in this way considering gp

 as a 
d-dimensional tuple and x as a time series of observations, we have 
the following general structure that is usually assumed:

( ) ( )( ) ( )    ε= +x t g p t t ……………………... (3)

of chaos-induced SOC.

While different fractal scaling laws in power spectrum and event 
size distribution are the classical markers of SOC, another aspect 
of SOC is the possibility of multifractal scaling which can occur 
for different profiles of power spectra and event size distributions. 
This leads us to the subset of the theory of SOC, which is the 
emergence of multifractal, rather than just fractal, scaling in far-
from-equilibrium complex systems. This is called multifractal self-
organized criticality (MSOC) and it has been identified in both 
financial and epidemiological contexts [13,14,16]. 

An important point is that multifractal scaling has been observed 
at critical points in phase transitions and in models of SOC, as 
reviewed in [16], which means that to just test for fractal scaling 
is insufficient if we want to identify and characterize the type of 
criticality resulting from a system’s self-organization dynamics 
towards criticality.

To evaluate the possibility of Multifractal Self-Organized Criticality 
(MSOC), we need to estimate a multifractal spectrum of generalized 
Hurst exponents. To do so, we employ Multifractal Detrended 
Fluctuation Analysis (MFDFA) with polynomial fitting, a method 
that is robust in the detection of monofractal versus multifractal 
scaling and in the case of turbulent processes, allow one to 
characterize the relation between risk and predictability [16,20].

The method that we use is described in detail in [20]. It involves 
the estimation of a detrended fluctuation function that, for a 
fractal or multifractal signal, scales with the lag in accordance 
with a power law scaling rule that depends upon the generalized 
Hurst exponents. Thus, for a multifractal process, the detrended 
fluctuation function F

q
 scales with the lag s, with the generalized 

Hurst exponent being a function of the moments’ orders q, in 
accordance with the following scaling law [16,20]:

( )~ h q
qF s  ……………………... (1)

In the special case of monofractal scaling, the exponent would 
be the same for all moments’ orders, in multifractal scaling the 
exponents change for different orders [20].

Fractal scaling occurs as straight lines in a doubly logarithmic plot 
of the detrended fluctuation function with the lag, for different 
moments’ orders. If the straight lines for each order all have the 
same slope, then we are dealing with monofractal scaling, if the 
straight lines have different slopes for different orders, we are 
dealing with multifractal scaling, the difference between the highest 
and the lowest exponents provides the amplitude for the spectrum, 
the higher the amplitude is, the stronger is the multifractality of 
the signal.

Besides the plot of the detrended fluctuation function for the 
different lags and moments’ orders, we also plot the multifractal 
scaling exponent function that allows us to picture the change in 
the scaling with the moments’ orders, this function is given by the 
formula [20]:

( ) ( ) 1τ = −q qh q  ……………………... (2)

In order to complete the analysis, we also plot the histogram for the 
generalized Hurst exponents and the graph of the function of the 
exponents for the different moments’ orders, besides these plots 
we also calculate the maximum and minimum of the generalized 
Hurst exponents’ distribution, which, as stated above, is useful in 
the characterization of the multifractal process involved.
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methods, in particular, we will apply Rosenstein et al., method for 
the estimation of the largest Lyapunov exponent in [23] and we also 
calculate the box counting dimension to evaluate the possibility of 
the presence of a strange chaotic attractor [18].

The uncovering of an underlying chaotic attractor is usually 
enough for one to study the patterns of that attractor assuming 
that to be the system’s main dynamics. In particular, when one 
uses the above method, one is able to find reconstructed attractors 
that usually capture the main dynamics, especially in the case of 
emergent dominant low- dimensional chaotic attractors [15,16,22].

The problem, however, is that other dynamics can be present and 
remain undiscovered if one does not research the residuals. In 
particular, complex systems, as open systems, can exhibit multiple 
complex dynamics, including complex noise processes. In this 
sense, in the present work, we also analyze the residuals’ series from 
the adaptive agent’s predictions for its patterns, with this defined 
as:

ˆ( ) ( ) ( ) ( ) ( ( 1), ( , ))ε = − = − −t x t x t x t f q t A t w ……………………... (7)

The steps to be taken regarding the residuals’ series largely depend 
upon the patterns present in the original series and in the residuals. 
When chaotic signatures are found in noisy data with dynamical 
noise, the attractor reconstruction leads to a basic hypothesis for 
stochastic chaos that can be tested using the machine learning 
predictions.

From equation (7) we know that the following decomposition 
holds for the phase point:

( ) ( ( 1)) ( )= − +ml resq t f q t q t ……………………... (8)

In the above equation, which holds exactly, the term qres
 (t) 

corresponds to the residuals’ tuple:

( ( 1) ),...., ( 2 ), ( )( ) , )( ( )ε ε ε ε− − − −=res t d l t l t l tq t ……………... (9)

while the function fml is such that it maps each element in the 
tuple q (t-1) as follows:

ˆ ˆ ˆ ˆ( ( 1)) ( ( ( 1) ),...., ( 2 ), ( ), ( ))− = − − − −mlf q t x t d l x t l x t l x t ………... (10)

Therefore the “machine learning” function maps the phase point 
to its next predicted value using the topological adaptive agent’s 
predictions.

The decomposition holds exactly, as follows from the above 
equations, because we are effectively decomposing the attractor’s 
embedded dynamics in the embedded series of predictions and 
embedded series of residuals. Since each element of the embedded 
original series decomposes in a machine learning prediction 
plus residuals term, the above equations hold exactly as a basic 
decomposition.

In this way, even though we do not know the general equations 
for system’s dynamics, the topological adaptive agent effectively 
produces a local function that links each phase point to a prediction 
for the next phase point using the topological signatures of the 
reconstructed attractor. 

In this way, instead of working with a global equation we are 
working with a local machine learning produced function that 
exploits the local topological order to recover a deterministic link 
between two sequential phase points.

A basic stochastic chaos hypothesis assumes that the residuals’ 
component qres

 (t) corresponds to the realization of a noise process, 

In this case, g is an unknown function, its argument p (t) is also 
unknown and the residuals term ε (t) is assumed to be a noise 
term. The major objective of delay embedding, which uses Taken’s 
theorem [21], is to reconstruct the order parameters’ dynamics 
p (t) by building the following tuple using the time series for an 
embedding dimension d and embedding lag l.

( ) ( )( ) ( ) ( ) ( )( )1 , ,  2 ,  ,  = − − …… − −q t x t d l x t l x t l x t ……………. (4)

The main problem is that of finding the embedding lag and 
dimension that allows one to reconstruct the dynamics so that 
the embedded trajectory q(t)   is equivalent to the trajectory of the 
emergent order parameters’ tuple p(t).

Different methods for finding the lag and dimension can be used, 
in the current work, we follow the methods introduced in [15,16,22] 
that take advantage of topological machine learning.

The use of a topological machine learning model is necessary, in this 
case, because we want to find the embedding that better captures 
the topological structure of the attractor, using a topological 
predictive scheme that exploits topological regularities in the 
reconstructed attractor in order to predict the target. In this case, 
it is useful to use a sliding window method for relearning since, for 
complex attractors, the AI is capable of adapting to attractor epochs 
and capturing a local structure of recurrences.

We, thus, deploy an adaptive topological agent that is given a 
training task of learning to predict the next value of the time series 
using the last embedded phase point, such an agent is an adaptive 
AI system equipped with a topological learning unit for learning 
such as a radius learning unit or a k nearest neighbours’ learning 
unit.

A topological learning unit is necessary because, as explained above, 
we are using the AI system as a search tool to find the embedding 
that has the greatest exploitable topological regularity, that is, the 
embedding where the topological information contained in the 
reconstructed dynamics provides for the best performing predictive 
order for the target time series, in this way, for different alternative 
embedding lag and dimension we select the pair for which an agent 
has the best adaptive performance.

Now, given a sliding learning window of size w, to predict the t-th 
value of the time series, we provide the sliding training data to the 
adaptive agent which can be formalized as follows:

( ) ( ) ( )( ){ }, ,  1 : 2, ,= − − + = …A t w q t s x t s s w ……………………... (5)

Using the above sliding window training data the topological 
adaptive agent produces a prediction from the last embedded 
point, so that we can write the prediction function:

( ) ( ) ( )( )ˆ 1 ,  ,= −t f q t A tx w ……………………... (6)

The above scheme can be implemented in a grid search of 
embedding parameters’ pairs, that is, given a set of alternative 
values for the embedding lag and the dimension, the prediction 
performance of the agent for the full series is recorded for each 
alternative embedding parameters and the embedding that leads to 
the highest performance within the set is selected.

Given the above method we know that, from the set of alternative 
embedding’s, we have found the one that captures the highest 
exploitable topological information for the signal in question.

Having chosen the result and characterizing the agent’s performance 
for that alternative we can then apply nonlinear time series analysis 
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The periodic signatures in the spectrum are consistent with both 
cyclical processes affected by noise and chaotic processes that are 
nearer the onset of chaos, where periodic signatures can occur due 
to the re-salience of cycles, it can also occur as a consequence of 
noise-induced order phenomenon [25,26].

Now, considering the probability distribution, as can be seen in 
Figure 3, we find that the distribution is well approximated by 
a power law scaling with a cut-off at the upper tail that shows a 
decreased value with respect to the power law scaling probability 
law, in this way, there is a deviation in the more extreme events 
where there is a high number of observed sunspots, events that 
have a lower probability than what would be predicted from the 
power law.

Figure 3: Cumulative distribution for the sunspot numbers and 
power law fitting.

This is common in empirical fractal structures and in the examples 
addressed by Bak, around SOC [27-29], indeed, there can occur a 
finite limit to scale invariance, an example in the sandpile model of 
SOC is found in [28], where the distribution of cluster sizes follows 
the power law scaling but there is a divergence from that scaling 
for the larger cluster sizes with the distribution of those larger sizes 
being smaller than that which is predicted by the power law.

The same occurs with the sunspot data distribution, however, as 
in the sandpile model addressed in [28], the dominant part of the 
distribution is well-fit by the fractal structure. 

In figure 3, we show the fitted power law in the power law scaling 
region for the cumulative distribution function obtained from 
50 quantiles, with an estimated slope of 0.5807, an intercept of 
-3.1236 and an R2 of 99.67%. 

The slope provides for an estimate of the power law scaling in the 
distribution density namely, in the power law decaying region the 
decay is approximately given by the empirical law:

0.4194( ) 0.0256 −=dP x x ……………………... (12)

The presence of a power law scaling in the sunspot frequency 
distribution and the power law decay of the power spectrum is 
strong evidence favorable to the hypothesis of SOC in the sunspot 
dynamics confirming the previous evidence of SOC in the sunspot 
dynamics [5,7,9,10].

However, besides the classical SOC signatures, we also find the 
presence of multifractal scaling, with a maximum generalized 
Hurst exponent of 0.8678 and a minimum exponent of 0.7782 
with an amplitude for the spectrum of 0.0895 (Figure 4).

this hypothesis may not hold as seen. The most basic case is when 
the residuals are Independent and Identically Distributed noise 
(IID) with a density function dPε, then we get a joint density for the 
residuals’ tuple:

1

0

( ( )) ( ))(ε ε ε
−

=

= −∏
d

res
k

dP q t t kldP
……………………... (11)

In complex systems, emergent chaotic attractors are usually affected 
by external dynamical noise processes, the above equations allow 
for the topological machine learning to recover a deterministic plus 
noise component, however, the elementary IID noise hypothesis is 
a special case, indeed, complex noise processes or other dynamics 
may be present in the residuals, which implies the need for an 
analysis of these other dynamics.

The types of analyses and methods applied in general depend upon 
the residuals’ process, therefore signal analysis for the residuals and the 
study of the residuals’ dynamics is necessary to evaluate its pattern in 
the reconstructed phase space. It is this main methodological approach 
that we now apply for the sunspots’ numbers series.

RESULTS AND DISCUSSION

In Figure 1, we show the time series sequence chart for the total 
daily sunspot numbers from 1 January, 1900 to 31 December, 2023 
retrieved from the World Data Center SILSO, Royal Observatory of 
Belgium, Brussels [24], while the earliest available data in the dataset 
was 1 January, 1818, we used a smaller dataset beginning in 1900.

Figure 1: Sunspot numbers from 1 January, 1900 to 31 December, 
2023. Source: WDC-SILSO, Royal observatory of Belgium, Brussels.

The series shows long run recurrent rises in solar activity, 
corresponding to a long- wave dynamics, the estimated Hurst 
exponent by R/S analysis is 0.8359, which is consistent with strong 
persistence. The power spectrum also shows a power law decay with 
a rise between 0.01 and 0.1-frequency range (Figure 2) as well as 
another rise in the low frequency range of the spectrum, this means 
that some periodic signatures may be present in what is a power law 
decay in the spectrum.

Figure 2: Power spectrum for figure 1’s data.
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In this way, for the grid search, we find that the highest exploitable 
topological information for the adaptive agent, using a k nearest 
neighbors’ learning unit, is achieved for a two-dimensional 
embedding and lag of 8, leading to a R2 score of 86.49%. Of notice, 
as can be seen in figure 5, the adaptive agent’s performance is high, 
above 85% and below 86.6%, which is a strong indicator for the 
presence of an exploitable topological order from the embedded 
series.

In order to proceed with further analyses, we need to evaluate the 
pattern of exploitable topological information with the number of 
nearest neighbors, in this case, we find that, for the two-dimensional 
embedding with lag 8, and with the number of nearest neighbors 
varying from 1 to 15, which is half the sliding learning window, the 
adaptive topological agent’s performance rises with the number of 
nearest neighbors reaching a peak at eight nearest neighbors, after 
which the performance decreases (Figure 6).

Figure 6: R2 score for the adaptive topological agent versus the number 
of nearest neighbors.

This means that the reconstructed attractor has the highest 
topological signatures for 8 nearest neighbors. For k equal to 8 
we find that the value of the R2 score is 86.60%, the explained 
variance is 86.61%, the RMSE is 28.9817 which represents 5.76% 
of the data amplitude and the correlation coefficient between the 
observed and predicted values is 0.9310, which is a positive and 
high correlation.

In this way, there is an exploitable topological information in 
the reconstructed attractor leading to a high performance of the 
adaptive topological agent.

Now, using equation (8) decomposition, we research the impact of 
the residuals on the attractor’s dynamics and study the sequence 
of predicted phase points as per equation (10) and compare the 
results with those of the observed phase points resulting from the 
embedding of the original series.

Studying both trajectories and estimating the largest Lyapunov 
exponent we find values close to each other, as shown in Table 1, 
however, the reconstructed predicted trajectory exhibits a slightly 
higher largest Lyapunov exponent, in both cases, the exponent is 
positive, which is a signature of chaos, and consistent with a near 
30 days Lyapunov time. The largest Lyapunov exponent is low, 
which indicates a possible proximity to the onset of chaos, a point 
to which we will return further on.

Figure 4: Sunspots series’ multifractal detrended fluctuation analysis, 
showing the: fluctuation function (top left), generalized Hurst 
exponents (top right), multifractal scaling exponent function (bottom 
left) and generalized Hurst exponents’ histogram (bottom right), the 
moments’ orders range from 0 to 50 in 200 steps and the lags range 
from 1.9 to 3.1 in 600 steps.

The multifractal scaling signatures are consistent with the hypothesis 
of MSOC. It should be stressed, however, that the spectrum 
amplitude is small, which means that, while there is evidence of 
multifractal scaling, the process is close to monofractal, the 
multifractal spectrum is also situated in the strongly persistent 
region, which reinforces the previous result from the R/S 
analysis.

The main point, now, is whether these SOC signatures are possibly 
chaos-induced signatures from an emergent dominant chaotic 
attractor or whether these signatures are associated with a possible 
stochastic process.

In order to research the possibility of chaos-induced SOC, 
associated with the above dynamics, as described in the previous 
section, we perform a grid search for the adaptive topological agent 
with 30 days sliding window, 10 nearest neighbors, distance-based 
weights and KD search tree. The lag values used range from 1 to 20 
and the tested embedding dimensions from 2 to 10.

We find that the adaptive topological learner’s best performance 
is always achieved for a two-dimensional embedding, which is a 
strong indicator of the presence of a two-dimensional attractor. 

The performance changes, however, with the lag, in this case we 
find a drop in performance from lag 1 to lag 2, and then a rise 
achieving the highest value for lag 8, as shown in Figure 5.

Figure 5: R2 score versus lag for the adaptive topological agent with  
two-dimensional embedding.
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A similar point holds for the distribution function estimated for 
the predicted series, in this case, both the power law scaling of the 
distribution and the deviation from that scaling are found in the 
predicted series’ distribution function, which is a strong indicator 
that the power law scaling in both the power spectrum and in the 
statistical distribution of events, including the deviation from 
that scaling for the higher order events are a consequence of the 
dominant chaotic attractor captured by the adaptive topological 
agent, an attractor that is linked to the long-wave dynamics of the 
sunspots’ series.

Indeed, as shown in Figure 9, we also find for the predicted 
series a region of power law scaling in the cumulative frequency 
distribution, with a cutoff towards the end of the distribution, 
in this way, the fractal distribution signature is also present in 
the predicted data, and, thus, can also be related to the chaotic 
component of the dynamics, the cumulative distribution function 
was obtained from 50 quantiles, with an estimated slope of 0.6016, 
an intercept of -3.2207 and an R2 of 99.84%. Equation (13) shows 
the scaling for the power law region of the density:

0.3984ˆ ˆ( ) 0.024 −=dP x x ……………………... (13)

The difference is that the R2 increased and the slope is higher, 
with the intercept being close to the previous value. The exponent 
is slightly less negative but still close to the main series’ value. In 
this way, the dynamical process associated with the residuals seems 
to reduce the R2 fit for the power law scaling region, as well as 
decreasing the Hurst exponent to a slightly less persistent dynamics.

So far, what we find is that the main attractor metrics are captured 
by the topological adaptive agent’s predictions with few deviations 
between the original embedded trajectory and the trajectory 
associated with the agent’s predictions, so that the predictions 
seem to capture the dominant chaotic process.

Figure 9: Cumulative distribution for the predicted sunspot numbers 
and power law fitting.

The fact that the SOC signatures are found in the predicted series 
means that these signatures are not associated with the residuals’ 
process but rather with the main chaotic attractor, furthermore, 
the filtering of the residuals leads to an even stronger persistence 
and reinforced multifractal scaling. Indeed, looking further at 
the multifractal analysis for the predicted series we also find the 
presence of a multifractal spectrum (Figure 10), however, there are 
a few relevant differences.

The multifractality is stronger, with the spectrum having a wider 
amplitude, in this case, the amplitude is 0.1469, the generalized Hurst 
exponents are also situated in a region of stronger persistence, with 
lowest estimated exponent being 0.8079 and the highest 0.9548.

Table 1: Main metrics for observed versus predicted series.

 Observed Series Predicted Series Variation

Largest Lyapunov 
Exponent (LLE)

0.0312 0.0333 0.0021

Lyapunov time 32.0345 30.0566 -1.9779

Box counting 
dimension

1.7308 1.7339 0.0031

Hurst exponent 0.8359 0.8818 0.0459

The box counting dimension also does not change significantly 
from the observed to the predicted trajectories with only a slight 
increase in the dimension for the predicted trajectory, however, 
both trajectories have a dimension of approximately 1.73, which is 
consistent with a strange chaotic attractor. In Figure 7, we show the 
R2 for the estimated dimension in the observed series’ reconstructed 
attractor is 99.80% while for the predicted series’ reconstructed 
attractor it is 99.84%, in both cases 100 boxes were used.

Figure 7: Box counting dimension for the embedding of the observed 
(left) versus predicted (right) trajectories using a two-dimensional 
embedding and an eight-days’ lag.

The Hurst exponent for the predicted time series is slightly higher 
than for the original sunspots’ series, showing a stronger persistence. 
This is the most significant change between the original series and 
the topological adaptive agent’s predictions.

In Figure 8, we show the power spectrum for the predicted series, 
which exhibits the power law decay and the slight frequency rise 
between in the frequency range from 0.01 and 0.1, as well as in 
the low frequency range, this implies that the periodic signatures 
and the power law decay can be traced back to the chaotic attractor 
captured by the topological adaptive agent.

Figure 8: Power spectrum for the predicted series.
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As shown in Figure 12, the residuals’ series shows evidence of 
intermittent turbulence with a burst-suppression like pattern 
(figure 12 left) and its distribution (figure 12 right) exhibits excess 
kurtosis, with an estimated Fisher’s kurtosis of 2.6191, with the 
Gaussian reference being zero.

Figure 12: Residuals’ series (left) and histogram (right).

The series is also multifractal, as shown in Figure 13, with 
generalized Hurst exponents in the anti-persistent region, which 
may explain the type of turbulence pattern observed in the graph. 
The highest estimated generalized Hurst exponent is 0.3048 while 
the lowest is 0.1676, with a spectrum amplitude of 0.1372.

Figure 13: Residuals’ series’ multifractal detrended fluctuation 
analysis, showing the: Fluctuation function (top left), generalized Hurst 
exponents (top right), multifractal scaling exponent function (bottom 
left) and generalized Hurst exponents’ histogram (bottom right), the 
moments’ orders range from 0 to 50 in 200 steps and the lags range 
from 1.9 to 3.1 in 600 steps.

The low values of the generalized Hurst exponents in an anti-
persistent region may possibly explain the reduction of the 
persistence pattern in the original series versus the predicted series.

In this way, the evidence for the sunspots’ series is that it exhibits 
a long-wave dynamics associated with a low-dimensional chaotic 
attractor leading to chaos-induced SOC with multifractal signatures 
in a strongly persistent regime consistent with black noise, but 
this attractor is being affected by a second process that is also 
multifractal but with evidence of anti-persistence, which reduces 
the strong persistence of the dominant strange attractor’s chaotic 
dynamics. The anti-persistent multifractal process may be linked 
to a compensation dynamics associated with the solar activity 
regarding the formation and dissipation of sunspots, a possible self-
regulation dynamics, with the multifractal process operating in a 
contrarian way with respect to the long-wave persistent attractor, 
which would show stronger persistence if not affected by this type 
of anti-persistent turbulent process. An important point, as we saw, 

Figure 10: Predicted series’ multifractal detrended fluctuation analysis, 
showing the: Fluctuation function (top left), generalized Hurst 
exponents (top right), multifractal scaling exponent function (bottom 
left) and generalized Hurst exponents’ histogram (bottom right), the 
moments’ orders range from 0 to 50 in 200 steps and the lags range 
from 1.9 to 3.1 in 600 steps.

The residuals’ process, thus, seems to reduce the multifractal range 
and also the exponents. There is a reason for this, as we will see 
when we analyze the residuals’ process.

At this point, the evidence is strongly consistent with the main 
SOC and MSOC, identified at the beginning of the analysis, as 
being linked to a two-dimensional chaotic attractor associated with 
the long-wave dynamics, which is consistent with chaos-induced 
SOC. Two-dimensional chaotic attractors can only occur for chaotic 
maps, indeed, for chaos to occur in continuous time nonlinear 
dynamical systems, the minimum number of dimensions is three.

The emergent chaotic attractor’s topological structure allows for a 
prediction capturing more than 80% of the sunspots’ variability, as 
per the calculated coefficients of determination, furthermore, as 
follows from table 1’s results and the above analysis the residuals do 
not significantly affect the attractor’s main features, only reducing 
the persistence level of the series.

As can be seen in Figure 11 (left) the predicted series (in orange) 
matches well the long-wave pattern, which is the dominant pattern 
that we found to be produced by a chaotic dynamics. The main 
point now is the residuals series’ dynamics, once we filter out the 
predictions obtained from the long-wave dynamics’ reconstructed 
attractor.

Figure 11: Time series plot (left) for the observed (blue) versus predicted 
(orange) series. Scatterplot (right) for the observed versus predicted 
series.
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dynamics, showing evidence of strong persistence and a second 
chaotic dynamics which is characterized by multifractal anti-
persistence and weak chaos. 

Figure 15: Estimated box counting dimension for the residuals’ series 
phase space trajectory.

The exchange of these two dynamics explains the main pattern 
associated with the sunspot data. In order to better characterize 
these two dynamics, we apply recurrence analysis to a sliding 
window for the reconstructed attractors, original, predicted and 
residuals.

Recurrence analysis is a topological data analysis method that 
involves the calculation of a Euclidean distance matrix from the 
embedded trajectory, containing all the pairs of distances between 
each phase point. The matrix is symmetric and has a null diagonal. 
Given a distance matrix, one can calculate a binary matrix of 
recurrence events for a given radius.

This recurrence matrix records a value of 1 if the distance between 
two points is at most equal to the value of the radius and 0 otherwise. 
The recurrence matrix is also symmetric with null diagonal [26].

Now, using a one standard deviation radius for the sunspot data, we 
calculate the recurrence matrices for a sliding window of 240 phase 
points of the sunspots reconstructed attractor and, for each matrix, 
we calculate the average recurrence strength and the conditional 
100% recurrence probability, as shown in Figure 16.

Figure 16: Average recurrence strength (left) and conditional 100% 
recurrence probability (right), obtained for a 240 phase points sliding 
window for the embedded sunspots’ number. The radius used was one 
standard deviation of the number of sunspots series.

The average recurrence strength is the sum of the number of points 
that fall within a distance no greater than the radius, in each 
diagonal below the main diagonal, divided by the total number of 
diagonals below the main diagonal with recurrence. 

This metric allows one to evaluate how strong on average the 

is that, upon the decomposition in the predicted and residuals 
trajectories in phase space, as per equation (8), the anti-persistent 
process does not significantly affect the largest Lyapunov exponent 
for the predicted trajectory, the box counting dimension, indeed, 
the impact of the anti-persistent process is not significantly visible 
in the dominant strange attractor’s main metrics, as shown in Table 
1, it is mainly visible in the reduction of the level of persistence in 
the fractal signatures of the dynamics, leading to a reduction in 
the persistence of the observed series with respect to the predicted 
(smoothed) series.

Another major finding is that the anti-persistent multifractal scaling 
is not consistent with the residuals’ process being characterized by 
simple IID noise, as would occur in the elementary stochastic chaos 
model with a single attractor affected by IID noise.

The presence of multifractal dynamics in the residuals’ series 
raises the possibility of a second process that can either be a purely 
stochastic multifractal process or, alternatively, we may be dealing 
with a second chaotic process, with a second type of chaos-induced 
multifractality. This hypothesis can only be evaluated by studying 
the trajectory of the residuals’ phase point qε (t) as defined in 
equation (9).

In Figure 14, we show the decomposed sunspot’s reconstructed 
attractor’s trajectory in the machine learning predicted component 
(left) and the residuals’ component (right) as per equation (8). In 
Figure 14, the topological machine learning-predicted component has 
a V-like dispersion near the origin and then shows a heteroskedastic 
pattern, which is consistent with the long-wave dynamics.

Figure 14: Decomposition of the adaptive topological agent’s 
predictions (left) and of the residuals (right).

The residuals component on the right, seems to show the presence 
of a noisy elliptical shape, calculating its box counting dimension, 
we find that the residuals’ trajectory in phase space has a well-fit 
fractal dimension as shown in Figure 15. The estimated fractal 
dimension, for the residuals’ phase space trajectory, is 1.6048 with 
an R2 of 99.89%.

Estimating the largest Lyapunov exponent for the residuals’ 
component, we find a positive but low largest Lyapunov exponent 
associated with the residuals’ attractor, the estimated value is 
0.0021. 

In this way, the residuals’ series, which shows markers of multifractal 
turbulence also exhibits evidence of being driven by another strange 
chaotic attractor, in this case, characterized by weak chaos, with a 
low largest Lyapunov exponent.

In this way, rather than one chaotic dynamics, the reconstructed 
attractor’s decomposition allowed us to uncover two chaotic 
dynamics associated with the sunspot data, one that is dominant 
in the main fluctuations and is associated with the long-wave 
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Figure 18. This is actually not linked to a higher largest Lyapunov 
exponent which, as we saw, is actually lower than that of the dominant 
attractor and close to zero, but, instead, it may be linked, in part, to the 
anti-persistence and, in another part, to the presence of noise.

Figure 18: Average recurrence strength (left) and conditional 100% 
recurrence probability (right), obtained for a 240 phase points sliding 
window for the embedded residuals’ series. Using a radius of one 
standard deviation of the residuals’ series.

In order to confirm this last hypothesis, we use a biorthogonal 2.8 
wavelet denoising of the residuals’ series, using soft thresholding, 
with a threshold of 0.95 and 10 levels decomposition, Figure 19 
left shows the denoised signal, which still exhibits the burst-like 
dynamics and on the right, we show the corresponding noise 
process obtained from the difference between the residuals’ series 
and the wavelet denoised series.

Figure 19: Wavelet denoised residuals’ series (left) and noise obtained 
from the difference between the original residuals’ series and the 
denoised signal (right).

We can now decompose the residuals’ series into the chaotic and 
the noise component which leads to:

( ) ( ) ( )= +res WT noiseq t q t q t ……………………... (14)

Where ( )WTq t is the wavelet filtered component and ( )noiseq t is the noise 
component. The first component is equivalent to an embedding of 
the filtered series in figure 19 left and the second is equivalent to 
an embedding of the noise series in figure 19 right.

Calculating the main chaotic and fractal analysis metrics on the 
wavelet filtered series and the wavelet filtered component, as shown 
in Table 2, we find that the box counting dimension is unchanged, 
up to a four decimal places’ approximation, there is, in fact, a 
slight difference between the original residuals’ series phase space 
trajectory’s fractal dimension and the filtered series’ trajectory with 
a reduction of -4.1913e-05 in the dimension for the wavelet filtered 
trajectory, however, this is a very small reduction.

recurrence is [26]. The conditional 100% recurrence probability is 
the probability that a randomly chosen diagonal with recurrence 
below the main diagonal has 100% recurrence, for the radius 
chosen [26].

As can be seen, in figure 16, the recurrence strength for the full 
embedded series’ dynamics ranges from low to high, while the 
conditional 100% recurrence probability is in general low with a 
few rises to strong recurrence periods. 

These metrics were calculated for a recurrence matrix obtained 
from a sliding window of 240 phase points, which corresponds to 
eight full 30 days periods, with the 30 days mark closely matching 
the Lyapunov time. In Figure 17, we show the same calculations but 
for the trajectory obtained from the topological adaptive agent’s 
predictions, which corresponds to the attractor shown in figure 14 
left.

We find that the main pattern of recurrences in the original 
data matches well the component obtained from the topological 
adaptive agent’s predictions. The average recurrence strength in 
both cases ranges from low to high values and the conditional 
100% recurrence probability is, in general, low but sometimes rises 
to high values.

Figure 17: Average recurrence strength (left) and conditional 100% 
recurrence probability (right), obtained for a 240 phase points sliding 
window for the embedded adaptive topological agent’s predictions, 
using the same radius as in figure 16.

This is consistent with a chaotic dynamics with strong recurrences 
and explains well the strong persistence. In this case, the mean 
value of the average recurrence strength is 0.6645 for the original 
embedded series and 0.7395 for the adaptive topological agent’s 
predictions’ component, thus, we find that the residuals, which, as 
we saw, also have evidence of chaos, are responsible for a decrease 
in the average recurrence strength.

The probability of finding 100% recurrence diagonals given that 
the diagonal is a diagonal with recurrence is in general low but 
sometimes rises to 1, a pattern that holds for both the original 
and the predicted series. The average probability is 0.2010 for 
the embedded sunspots’ series and 0.2765 for the predictions’ 
component.

In this way, again, we find that the second residuals’ process reduces 
the recurrence, however, the overall pattern for the recurrence 
profile of the original embedded series is dominated by the main 
long-wave dynamics’ attractor that is captured by the adaptive 
topological agent.

Considering now the recurrence profile for the residuals’ chaotic 
process, and also using a one standard deviation radius, we find 
that the mean of the average recurrence strength is lower, with a 
value of 0.3909, and there are lower peaks of conditional 100% 
recurrence probability with a mean value of 0.0265, as shown in 



12

Gonçalves CP

Int J Swarm Evol Comput, Vol.13 Iss.05 No:1000387

Figure 21: Autocorrelation and partial autocorrelation functions for 
the noise process.

We found that the only way to remove the autocorrelation leading 
to a white noise process is to estimate a ARIMA (1,0,1) process. 
In Table 3, we show the results of the estimation of the ARIMA 
model.

Table 3: ARIMA (1,0,1) model estimation results.

Coefficients Value Std. Error

c 0.0209 0.005

AR(1) 0.0288 0.015

MA(1) 0.3043 0.014

Log-likelihood -57554.8  

The use of the normal distribution in the ARIMA filtering needs to 
be interpreted as a pseudo-likelihood, since, in this case, as we will 
see, the distribution of the ARIMA residuals’ is not Gaussian but, 
instead, described by a rescaled beta distribution, a point to which 
we will return further on.

The filtering of the ARIMA component leads to the removal of any 
dependence in the noise series, as shown in Table 4. In this case, 
the Box-Ljung’s test’s null hypothesis is no longer rejected, nor is 
any heteroskedasticicty found.

Table 4: Diagnostic tests on ARIMA residuals.

Test Statistic p-value

BDS sample 1 (22624) -1.1579 0.2469

BDS sample 2 (22625) -1.1341 0.2568

Ljung-Box (L1) (Q) 0 0.97

Heteroskedasticity (H) 0.99 0.4

Kolmogorov-Smirnov test normal 0.0185 6.28E-14

Kolmogorov-Smirnov test beta 0.0065 0.0422

Now, we need to go further than these two tests and test whether 
we are dealing with IID noise, the full dataset, however, proved 
computationally too large to apply the BDS test for independence 
with the full sample, so we divided the sample in two subsamples 
around the middle observation and calculated the BDS test on 
each subsample, we used a maximum embedding dimension of 
2, in both cases, we found the null hypothesis not to be rejected, 
in this sense, the ARIMA residuals are indistinguishable from IID 
noise, as also shown in Table 4 [30].

Table 2: Main metrics for the denoised versus original residuals’ series.

Residuals Original Denoised Variation

Largest Lyapunov Exponent (LLE) 0.0021 0.0053 0.0032

Box counting dimension 1.60479 1.60475 -4.19E-05

Max h(q) 0.3048 0.3015 -0.0034

Min h(q) 0.1676 0.1652 -0.0024

Spectrum amplitude 0.1372 0.1363 -0.001

The largest Lyapunov exponent rises slightly from 0.0021 to 0.0053, 
which is consistent with the hypothesis that the noise was a factor 
in the reduction of the Lyapunov exponent value. However, the 
dynamics is still characterized by weak chaos.

The multifractal spectrum has a similar profile, however, there is a 
slight decrease in the spectrum amplitude and the maximum and 
minimum generalized Hurst exponents are shifted to lower values, 
which means that the wavelet-filtered dynamics is shifted more 
into the anti-persistent region, showing that the source of the anti-
persistent multifractal dynamics in the residuals’ series is effectively 
linked to the second chaotic attractor.

In Figure 20, we show the average recurrence strength and the 
conditional 100% recurrence probability for the embedded 
denoised series, the profile is similar to that of the original residuals 
shown in Figure 18, there are, however, a few differences, namely, 
the average recurrence strength actually increases with the mean 
value being now around 0.4056, while, for the original residuals’ 
embedded series, it was 0.3909, likewise, the probability of a 
diagonal with recurrence being a 100% recurrence line, increased 
from 0.0265 to 0.0328, in the embedded denoised series. In this 
way, the noise led to a slight decrease in the recurrence structure of 
the anti-persistent second attractor.

Thus, despite the slight rise in the largest Lyapunov exponent, 
there is an increase in the recurrence structure, with the denoising 
process. Now, turning to the noise process, we look at the noise 
series shown in figure 19 right.

In this case, we find that there is a significant autocorrelation, 
with the Box-Ljung statistic having an estimated value of 4101.9746 
with an associated p-value of 0.0 for a lag of 1, the autocorrelation 
function and partial autocorrelation exhibiting a fast decay to zero 
(Figure 21).

Figure 20: Average recurrence strength (left) and conditional 100% 
diagonal line probability (right), obtained for a 240 phase points sliding 
window for the embedded denoised residuals’ series, using the same 
radius as in figure 18.
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chaotic attractors demands the study of both those attractors and 
of the possible noise processes present. Namely, what may be 
considered as a first decomposition between attractor and noise 
may prove to be a more complex process. Namely, the presence of 
multiple attractors and also complex noise processes need to be 
researched for a full characterization of the dynamics.

In the present work, we applied a topological machine learning-
based approach for dealing with stochastic chaos that allows not 
only the identification of possible attractors but also the research 
of the residuals’ processes for further dynamics. Applying this 
framework to the sunspots’ data we found the presence of not one 
but two low- dimensional chaotic dynamics plus an ARIMA (1,0,1) 
process with IID noise.

In this way, while we are dealing with stochastic chaos, but the 
type of process is not as simple as a single chaotic attractor plus 
an IID noise process. Indeed, the two chaotic attractors play a key 
role in the dynamics. The first attractor, which is the dominant 
attractor, accounting for more than 80% of the variability of the 
data, is linked to the long-wave dynamics of the sunspots and to the 
main markers of SOC, including the power law decay in the power 
spectrum, the strong persistence in the dynamics, the power law 
scaling in the distribution of events and also the main multifractal 
scaling profile in the sunspots’ data.

The second chaotic attractor, which is not directly visible in the 
sunspots’ data, is linked to an anti-persistent multifractal dynamics 
and, while not changing the main profile of the SOC for the 
sunspots, reduces the persistence of that process.

These two attractors are affected by an ARIMA (1,0,1) process with 
IID residuals. The fact that we were able to decompose the original 
process into its three components reaching, in the end, an IID noise 
term means that, applying the main methodological approach, we 
were effectively able to extract all of the main dynamics present in 
the original data.

The decomposition method described in this work and illustrated 
for the sunspots’ data can be applied to other contexts of 
applications of the new empirical methods from chaos theory, 
enriched by machine learning and topological data analysis.
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