
Spatio-Temporal Patterns Act as Computational Mechanisms Governing
Emergent Behavior in Robotic Swarms

Terry Jack MDA*, Khuman SA and Owa K

De Montfort University, Leicester, UK

ABSTRACT
Our goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically

control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their self-coordinating

emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to

predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global

knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that

emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into

1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micro-macro gap (i.e.,

how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that

there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this

theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then

designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms

to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully

confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of

embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm

according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate

and allow global behaviors to emerge across the swarm).

Keywords: Robotic swarms; Swarm intelligence; Dynamic networks; Complexity science; Complex adaptive systems;

Emergence; Genetic algorithm

INTRODUCTION

Main aims and challenges

The overall goal of this project is to intrinsically control the
emergent behavior of a robotic swarm.

1st challenge: Conventional methods fail to control
decentralized systems like swarms: At first, controlling a swarms
behavior sounds straightforward enough, however, upon closer
inspection it becomes apparent that this is a complex and
nonlinear problem. Robotics warms are entirely distributed
systems [1-5] with a distributed group intelligence [6]. This
means that, rather than being focused within any one robot, the

intelligence and control of a robotic swarm is equally distributed
across all individuals [7] (a large reason why it is so hard to
control a swarm). Furthermore, robots only have access to
localized information gained through directly interacting with
their neighbors (i.e., via contact or shortrange communication)
and occasionally via indirect interactions (i.e., stigmergic signals
left in the environment like pheromone trails left by ants).

Therefore, a swarm ’ s individual may even interact in a
haphazard, disorderly manner, giving rise to the turbulent or
chaotic characteristics of a swarm. Viewed at an individualistic
level, robots can be seen busying themselves with their own,
individual jobs; without a future vision and unaware of any

Internatio
na

l J
ou

rn
al

 o
f S

warm
 Intelligence and Evolutionary Computation

ISSN: 2090-4908

International Journal of Swarm
Intelligence and Evolutionary
Computation Theory

*Correspondence to: Mohammed D.A. Terry Jack, Glenburnie Road, De Montfort University, Leicester, UK, Tel: +44-7852287613; E-mail:
b.terryjack@gmail.com

Received date: January 01, 2019; Accepted date: January 30, 2019; Published date: February 25, 2019

Citation: Terry Jack MDA, Khuman SA, Owa K (2019) Comparative Study of the Mechanical Performance of Bitumen Binders and Mixtures
Utilizing Crumb Rubber, Tafpack Super, and polypropylene. Int J Swarm Evol Comput 8:175.

Copyright: © 2019 Terry Jack MDA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 1

mailto:b.terryjack@gmail.com

larger picture [6]; they remain oblivious to the positive
contribution their work and interactions are having on the
global behavior of the swarm. Decentralized systems (like swarms
[2,8]) coordinate in a manner completely alien to the norms of
centralized control [2,6,9,10-12]. This means that robotic swarms
are void of common control structures (like hierarchies, chains
of command [1,2] or leaders-contrary to the misconception that
the behavior of a swarm is somehow governed by the telepathic
powers of a queen [13] etc). Unfortunately, centralized control
strategies are highly dependent upon these infrastructures [12]
and will fail when applied to decentralized systems which lack
them. Ordinary control methods hold little influence over the
governance of a robotic swarms behavior [1-6,8,14].

2nd Challenge [Extrinsic vs Intrinsic control]: There have been
attempts at controlling robotic swarms by enhancing its
individuals [6]. Under normal circumstances, swarms
individuals are unintelligent and operate under very
rudimentary conditions (i.e., have minimal processing power
and are ignorant of global conditions pertaining to the swarm-
such as their absolute position within the swarm [11]). If the
robots were modified to have a more sophisticated processing
power and enough memory to store an internal map or model
of the environment, they could be programmed with the
intelligence to estimate their own pose and location within the
swarm (i.e., via Simultaneous Localization And Mapping-SLAM-
techniques), and the swarm could essentially be controlled at the
level of its individuals. This approach has been tested and
produced accurate robotic behaviors (despite suffering minor
difficulties when faced with very symmetrical environments such
as corridors [11]), however, it is computationally expensive and
ultimately requires the robots to be enhanced with more
powerful, on-board processing [11].

To avoid increasing the robots computational power, which in-
turn increases their complexity, expense and energy
consumption (removing some key advantages of a robotic
swarm), individuals have been modified to use off-board
processing [11] (maps or models of the environment are stored
externally and are accessed wirelessly by the robots during run-
time). Therefore, robots need only be equipped with enhanced,
long-range communication (something regular robotic swarms
lack), which enables robots to access centralized, global
information (i.e., GPS data [11], knowledge of the swarms
overall goals or plans [15], the current state or behavior of the
entire swarm etc. [3,11,12]) and thus forces a form of centralized
control structure onto the robotic swarm. Unfortunately, this
modification reduces the swarm’s adaptability (removing yet
another advantage of a robotic swarm) since the limitations
imposed by wireless transmission times and feedback delays [11]
severely slow down the robots reaction times, making the swarm
less adaptive in dynamic terrains with rapidly changing features
[16].

Although a modified robotic swarm can perform feats such as
splitting itself up into heterogeneous teams of robots which can
then simultaneously solve sub-tasks which contribute to a larger,
externally set goal, the resulting swarm behavior is very rigid (a
piece-wise, step-by-step behavior), compared to the turbulent,
organic, subtly self-organizing behaviour which emerges in

unmodified robotic swarms (consisting of purely homogeneous,
unintelligent individuals [6]). By attempting to tame a wild
swarm (i.e., by imposing restraints upon it to control its
behavior), it seems to cease behaving like a swarm. This suggests
that enhancing a swarm’ s individual in order to impose a
centralized control structure on the swarm is not the secret to
controlling its emergent behavior [3]. Controlling a swarm
demands an alternative approach; one which avoids imposing
any external influences and artificial structures onto the swarm
[6,17]; the control must come naturally, from within!

3rd challenge (Emergent phenomena): Currently, designing
emergent behaviors in robotic swarms is like working in the dark
and relatively limited progress has been made. Swarm robotic
designers have resorted to two main approaches which try to
bypass the micro-macro gap problem (i.e., how localized,
individual behavior on the microscopic level lead to globally
coordinated, intelligent behavior emerging at the macroscopic
level) a bottom up behaviour based approach (which is timely
and unsystematic) and a top-down evolutionary based approach
(which is a black-box). If we are to ever, truly control a robotic
swarm emergent behavior, an investigation into its Emergent
Phenomena is inevitable. Researchers investigating Emergent
Phenomena in Cellular Automata have discovered a hidden,
computational layer which seems to bridge the mysterious micro
macro gap. There is a lot left to explore in order to understand
how computation emerges in many natural systems [18],
however, we hypothesize that emergent computation is the secret
to understanding the emergent behavior in robotic swarms (and
likely all types of complex adaptive systems). Therefore,
controlling the behavior of a robotic swarm (while retaining the
high levels of independence demanded by the individuals within
the swarm [3]) requires more insight into a robotic swarms rich,
spatio-temporal information [19]. Swarms can be viewed as a
form of parallel processing system, complete with inputs,
outputs and an asynchronous spatial logic [2,20] which stores,
propagates and modifies information across the swarm over
time. The secret to unveiling (and eventually manipulating) the
swarms mysterious self-managing behaviour lies in better
understanding this intrinsic logic and inherent parallelism
[10,12]. What are the mysterious mechanisms which link the
micro-level components (which execute rules based on purely
local information) to the subsequent structures and interactions
that appear at the macro-level? [17] If the information processing
mechanisms which drive emergence and self-organization in
robotic swarms can be uncovered, the understanding and insight
gained would allow us to control artificial swarms [21] and
perhaps even engineering new forms of parallel computing
systems [10].

Sub-aims: There are several proposed tasks; each progressively
more challenging than the last. Tasks are also accumulative;
building upon prior tasks (hence the accomplishment of most
tasks rest upon the completion of tasks preceding it

• Design a rule-set that produces intelligent, emergent behavior
in a (stimulated) robotic swarm.

• Design a genetic algorithm that evolves a robotic swarm with
emergent behavior.

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 2

• Discover the (hypothesized) computational mechanisms which
underlie a swarm’s emergent behavior.

• Understand the computational mechanics discovered by: a.
identifying all spatio-temporal patterns b. modelling the
characteristic behaviors of each spatio-temporal pattern c.
mapping the interactions between each spatio-temporal
pattern.

• Predict the swarm ’ s emergent behavior by simulating its
underlying computational mechanics.

• Investigate methods to manipulate the underlying
computational mechanisms, including; (i) Injecting, (ii)
Removing, (iii) Reflecting, (iv) Attracting and (v) Repelling
spatio-temporal patterns.

• Intrinsically control the swarm ’ s emergent behavior by
reprogramming its underlying computational mechanics.

Advantages to controlling a swarm

Not only is it beautiful to witness large numbers of individuals-
preoccupied with their own, self-serving objectives [3] effortlessly
cohere and self-organize [1,6,8,14] into various emergent-
behaviors [6,8], without realizing that their actions and
interactions are inadvertently contributing toward a greater,
global behavior [3,12], but robotic swarms also carry a number
of advantages [10]. Complex problems are solved relatively easily
with swarm-like strategies based on self-organization and
emergent behavior [3], while conventional methods struggle [2].
Distributed control is also cost-effective [22] because any burden
(i.e., power consumption, sensing and processing requirements
[11], physical strength, etc) is shared equally across every
individual. This is an especially attractive concept for aerospace
systems since they must be limited in size, weight, and power
consumption [3]. Yet despite individuals being small, limited
and exhibiting very simplistic behaviors (like insects), a large
number of them can culminate their abilities to form highly
complex, intelligent group behaviors that are able to accomplish
a wide range of significant tasks (e.g., robotic swarms inspired by
ants can cross ditches by connecting to form a bridge [12]).

Most artificial systems are too rigid to operate under high levels
of uncertainty and incomplete knowledge [6], commonplace
conditions in natural environments. However, a robotic swarms
ability to spontaneously reorganize itself makes it extremely
flexible [1,12,14,23] and adaptable [3,6,22-24] to cope with a
broad spectrum of situations, problems and tasks [12,25].
Robotic swarms can even respond to unforeseen events [1,6],
even if the environment itself is dynamic (i.e., has continually
changing features or conditions [6,23]). Even though the
individual behavior of the robots are too basic to adapt or
change, the resultant global behaviors which emerge across the
swarm can flexibly adapt (e.g., a robotic swarm may
spontaneously split into new group formations [6]). Adaptive
systems also possess the potential to learn [6,14] (i.e., robot
swarms may learn to favor a particular response when faced with
a specific set of environmental changes [2]).

A swarms computational power is dynamic and can be increased
(to solve more difficult problems) via the rapid deployment [22]
of additional individuals injected into the swarm [20] (similar to
increasing the number of neurons in a neural network to find

better solutions to more complex problems). Likewise, for
efficiency, only a fraction of the swarm need be used to solve
simpler problems [20]. Since swarms are scalable to different
group sizes [8,12,16,22,23], its global behavior is almost
completely unaffected by the number of individuals within the
swarm [22]. Hence, even if the swarm size changes mid-task (via
the introduction or removal of individuals) its overall behavior
does not drastically change [12] (other than a slight
improvement toward larger set sizes [22]).

Networks of distributed individuals [22] like robotic swarms
have the advantage of being robust [6,8,12,24,25] to individual
losses [12], failures [16,23] and physical damage [1,14,20] and
thus, even if individuals are added, removed or destroyed, the
swarm is minimally affected [22]. Because communication in
decentralized systems can occur between any neighbour [6]
(rather than needing to communicate with a central entity and
await new commands from them), the remaining individuals
quickly re-adjust to compensate for any loss avoiding any
significant effect on the final result [15] (which is why it is so
difficult to exterminate social pests [12]). Robustness makes
swarms very well suited to military applications. If space
missions were conducted using swarms of miniature spacecraft
[1] (as opposed to single spacecrafts), some members of the
swarm could potentially sacrifice themselves for the greater good
[1]. This natural fault tolerance [20,22] is largely promoted by
redundancy [12], the absence of a leader [12] (in most systems, if
the central coordinator is injured or lost, the entire system
collapses [10]) and the strange fact that swarms (and other
distributed systems) are only weakly sensitive to any one,
individual influence [26] (a reminder that controlling an
individual is not the key to controlling the swarm).

Finally, swarms can handle multiple inputs [4,5] and easily digest
large amounts of information [1] by parallel processing it in an
asynchronous manner across its large collection of individuals.
By dispersing the information across the entire system [1], as
opposed to bottlenecking the data (as is done during linear
(centralized) information processing [10,24]), higher information
exchange rates [27] can be achieved at great speeds and
efficiency.

Applications of controlled swarms

It is a wonder how swarms ever synchronize their decentralized
information to come to a common decision [12] or make group
decisions and think as a whole. Yet they can and do. Examples
of such collective decision making behaviors include: task
allocation, consensus, collective counting [28], collective
memory [28], etc. Swarms can perform incredible feats,
otherwise over burdensome for a single individual, due to their
pooled resources. Collective transportation (wherein individuals
cooperate by connecting to increase their overall pulling power)
is useful for carrying large, heavy objects [9,12], such as gallons
of water or chemicals to pollinate a field of crops [1]. A simple
lattice formation [22] can be very useful to quickly establish a
distributed computer grid (also known as a distributed sensing
grid [22]). Applications include:

A dynamic, emergency communication network [3] ideal for
situations where traditional, stable network Infrastructures (i.e.,

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 3

satellite communication) have broken down [1,2] or become
inaccessible due to extremely long distances or barriers [3]. An
emergency communication channel is a primary security
requirement in disaster relief scenarios. Multiple tiny robots
quickly disperse into the open spaces. Upon detection of a
survivor, a robot emits a message signalling the discovery. This
message is propagated locally between robots only... (and) makes
its way back to the entrance where rescue team members can
now follow (it)... to the survivor [16]).

Surveillance [1,12,16,22] an obvious application due to its wide
use in reconnaissance [16], traffic monitoring [1], image
processing [28,29] and weather and climate mapping [1].

There are various other safety, security and environmental
applications [1,2] including: intrusion tracking [12,16],
hazardous environment exploration [1] (e.g., NASA is
investigating swarm based spacecraft to explore deep space
without risking human lives [3]) or hazard detection [16] and
removal (e.g., removing old landmines [12]. swarms of tiny
(robots)... explore the ocean floor and clean up the marine bays
[3]. Equally by detecting and cleaning up harmful chemicals,
pollutants and oil spillages [1,2,12]) as well as its future
maintenance. iv. A distributed display (each robot serving as a
pixel in the display) embedded in the environment and actively
annotating it (e.g., terrain features may be highlighted or added,
such as synchronized blinking lights to form a route toward a
site or person, etc) [16]. Swarms are probably most known for
their mystically self-organizing computational geometries [28].
Randomly distributed individuals will automatically and
spontaneously organize themselves and their surrounding
objects [12] into orderly formations. Spatially-organizing
behaviors [22] that manipulate the environment can be useful
for assembling physical constructions [12,25,30] such as those
built by bees, termites and other social insects [17] or
alternatively for the assembly of complex, large-scale, virtual
systems [6]. Spatially-organizing behaviors that focus on
manipulating the swarm itself can be used for morphogenesis
[12] (self-assembly [20]) which includes self-management, self-
optimization, self-protection, self-healing or self-repair [3,20,22],
self-configuration [3] and self-construction [6]. The most
common spatially-organizing behaviors include (a) aggregation
[9,17,25] (often seen when social animals flock [12] or swarm
[25] together), (b) dispersion or splitting up (a form of predator
avoidance [14,25] often utilized in schools of fish or motorcycle
gangs being chased by the police), (c) segregation [17,30] which
can be used to sort, group and cluster together different classes
of objects [17] into patches, bands (as with annular sorting) or
any other geometrically organized formations. For this reason,
this is sometimes referred to as shape or pattern formation
which can be extended to chain formations and bulk alignments
[25], all of which have numerous applications for civil defence
(i.e., automatic perimeter defences [22]) and offensive military
operations (i.e., battlefront formations [30], convergent attacks
on targets from multiple sides [3], etc).

A swarms ability to self-organize can produce many beautifully
unified swarm behaviors such as coordinated motion [9] (to
increase stability when travelling through rough terrain [12]),
and foraging [9,14], collective exploration [1], path planning and

other navigation behaviors [3,12,28,29] which have inspired
efficient search methods and optimization algorithms (e.g., ant
colony optimization, bird swarm algorithm, etc.) due to their
rapid terrain coverage across expansive environments (or virtual
search spaces) via their inherent pluralization and redundancy
[11]. Thus, swarms would serve well in search and rescue
operations required in the aftermath of a natural disaster [1,12].

Eventually, as the field of nanotechnology advances, swarms of
nanobots could be used in health care [1,2] (like an artificial
immune system-just as virtual swarms are already being utilized
to defend and optimize computer networks, by automatically
rerouting and repairing nodes, discovering and attacking
malicious viruses, etc. [6]). As well as targeting natural ailments
and foreign viruses, they could improve or enhance our own
bodily functions. They could even potentially discover and kill
cancer tumors [3].

Dangers of uncontrolled swarms

Despite the ability swarms have to scale, if the number of
individuals in the swarm becomes too little, the intelligent
group behavior of the swarm disappears and only the simple,
unintelligent behaviors of the individuals remain (this is why it
is impossible to understand a swarm’s emergent behavior by
studying the individuals in isolation). Large numbers are
required for intelligent swarm behaviors, such as self-
organization, to emerge [30].

There are two large disadvantages which discourage a wider
acceptance of swarm usage, both due to the unpredictable
nature of a swarm. Firstly, the time taken to converge to the
desired, global behavior varies greatly for each run; it can
sometimes converge very quickly and sometimes very slowly.
This is because the convergence speed is dependent on the
combined feedback times between neighboring individuals
communicating within the swarm and any subsequent
spatiotemporal pattern propagation transporting, converting
and combining local behaviors across the swarm [7] (which can
be significantly slow depending on the spatial medium for
instance it took several days for slime mold in a petri dish to
produce a voronoi diagram [20]). Secondly, the flexible, adaptive
nature of swarms mean that their global, collective behaviors are
difficult to predict. They often vary with different
environmental conditions, despite individual level behaviors
within the swarm remaining the same [13]. This unpredictable
adaptability poses sophisticated management challenges to
controlling a swarm [2] and it is widely accepted that controlling
a swarm (i.e., changing its global goal [6], stopping it if it is
behaving too dangerously [12], etc) once it has started operating
is not yet possible [12]. Thus far, most control features of true
swarms have been to design global behaviors and features into
the swarm during its design phase, prior to its deployment and
execution within the environment [6]. Nevertheless, it remains
the ultimate goal of this project.

Until a method to properly control swarms during runtime has
been developed, it is far too risky to deploy them among
humans [12] due to the potential threats they pose over safety,
security and confidentiality [2]. Furthermore, a swarm can be
viewed as a mobile dynamic network, and thus faces the many

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 4

risks associated with networks (e.g., Cyber-attacks to the physical,
software or network layer of the swarm could easily disrupt
communication links between mobile-robot nodes). The
emergent behavior of the swarm could potentially dissipate if its
network were significantly disrupted.

BACKGROUND

Robotic swarms

A single robot is an autonomous system in itself [3,6,12]
requiring minimal manual intervention during runtime [12].
Robots are thus well suited for remote exploration missions in
hazardous locations with harsh conditions (i.e., deep space [3])
or other jobs that are considerably risky and dangerous for
human beings. A robotic swarm is a multi-robot system [1] and
is thus comprised of multiple autonomous individuals [2] (often
large numbers [2,3,12]; in the thousands [3]). Whereby a single
robot can only carry out a linear sequence of tasks, a robotic
swarm can break up the list of tasks and distribute it across the
swarm to be completed in parallel [17], completing the job more
quickly, easily and efficiently.

Robotic swarms vs. Collective robots

However, swarm robotics is not the same as other approaches to
collective robotics [12]. The robots in a robotic swarm are
extremely basic, simple and reflexive individuals [3,12] that
merely react to sensory stimuli [12] (they do not direct their
work but are guided by it [17]). They are extremely unintelligent
robots [16]; they have no memory of past actions or previous
state information [16,31] nor any internal models to map their
current environment or represent their present states [11,16];
and since they have no memory or models to plan and predict
future actions [12], they are incapable of sophisticated [14], goal
based behaviors; unable to proactively plan ahead, make
complex decisions or solve problems individually [2].
Furthermore, individuals in a robotic swarms do not have long-
range communication [11] (nor global information like global
positioning, by extension) and are limited to communicating
locally (i.e., with nearby neighbors rather than the whole swarm)
via direct interactions [3,6,11,12,15,16,32] or via short-range
sensors primarily used to detect immediate surroundings (e.g.,
infrared [32], virtual pheromones [16], etc.).

Robotic swarms vs. Emergent phenomena

The major advantage of such simple individuals [6] is that each
robot requires minimal on-board processing [16] and only a
basic processing power which is advantageous for
miniaturization [3] (robots can potentially be the size of dust
particles [16] if coupled with advances in nanotechnology).
What’s more, a society of low-level individuals cooperating re-
actively behaves intelligently as a collective, and complex tasks
are solved in ways superior to solutions planned in advance via
conventional, proactive, high-level methods [1,14]. This artificial
swarm intelligence [3,14] emerges without any active push for it
at the individual level [3] nor via properties from any single
individual [14] and gives a whole new meaning to the age-old
cliche the whole is more than the sum of its parts [6]. The

emergent behavior [1,2,8,12,33] of swarm robotics destroys the
assumption that individuals obeying simple rules can only ever
produce simple behaviors [34]. Complex global behaviors need
not result from complex rules [34] as they can also emerge from
very simple rules [3,12,15,33] as demonstrated by the many
natural systems from which swarm robotics draws inspiration
(e.g., birds do not plan or knowingly cooperate to collectively fly
in a v-shape, rather each bird focuses on simple rules like flying
at a certain speed and proximity relative to adjacent birds [34]).

Emergent phenomena

The ability for natural systems to create order from chaos has
gained the attention of a large body of academic researchers and
spawned a whole new cross-disciplinary science, called
complexity science or complex (adaptive) systems, devoted to
understanding this phenomenon. Yet an emergent
phenomenon is still not fully understood, despite being at the
forefront of current research. It is not well understood how such
apparent complex global coordination emerges from simple
individual actions in natural systems or how such systems are
produced by biological evolution [10] and thus understanding
and harnessing the fundamental organizing principles of
emergence remains one of the grand challenges of science [35].

What makes emergent behavior so difficult to understand is
that, unlike resultant behavior, the systems global behavior is
counter-intuitive since it is not a property of any of the
components of that system [34] and thus shows no correlation
to the individual behavior of the individuals making up the
system [34] (e.g., analyzing the behavior of an ant will reveal
nothing about how ant swarms are suddenly able to self-organize
into an ant bridge). When analyzing the local behavior of any
one individual, the emergent phenomenon disappears. If an
emergent phenomenon is to be studied, it must be done by
analyzing the distributed individuals in parallel. This may be
hard to comprehend because people have a centralized and
deterministic mindset, they expect there to be a centralized
leader (a bird leading the flock, a queen bee controlling the
hive, etc.) and are uncomfortable believing that randomness can
sometimes give rise to orderliness or patterns [36].

Examples of emergent phenomena in nature

Emergent behavior is a mysterious, natural phenomenon which
allows a group of randomly distributed individuals lacking any
global information, intelligence, or global communication (via a
central controller) to spontaneously self-coordinate into an
organized collective group, capable of a coherent, intelligent
behavior (e.g., emergent phenomenon transforms a collection of
simple neurons into a complex, intelligent brain that can
produce abstract thoughts). It is believed that emergent
phenomena, like group learning, artificial evolution [9], global
organization and self-coordination, are all side-effects of
individuals communicating with one another, explicitly and
implicitly, in a decentralized, swarm-like manner.

Self-organizing, group behaviors emerge across physical [26,30],
biological [3,30] (insect [1,2,8,13,25,30] or animal [2,8,12,30])
and sociological settings. Physical systems may include stable
magnetic orientations and domains [26] or vortex problems in

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 5

fluids [26], etc. Biological systems include single celled
organisms [25] which exhibit emergent behaviors when in large
groups (such as the spontaneous aggregation of bacterial
colonies [10,12], or the subtle adjustment of tumbling rates due
to the perceived chemical concentrations which allows bacteria
to move toward regions rich in nutrients [15]). Larger living
organisms (like humans) are but a collection of cells, self-
assembling and interacting locally [19] to form tissues, [12],
organelles [7], organs [12], organ systems and other necessary
body systems (such as the immune system-which has inspired
many network intrusion detection algorithms [6]). The brain
(which has inspired the creation of Artificial Neural Networks)
is nothing more than a large collection of specialized cells called
neurons [10] that interact locally (by exchanging electro-chemical
signals [37]) to parallel process external sensory information [10]
via emergent computations [38], resulting in our internal
thoughts and emergent mental images [38].

Emergent phenomena is also rife in social systems like insect
colonies, such as flies [39], fireflies (which are able to flash
together, synchronously), spiders [6], cockroaches [12], termites
[12,16,17] wasps [14], bees [6,12,14,15] and ants [3,6,12,14-17,40]
(which are by far the most commonly studied social insects). In
particular, the way ants forage (which has inspired network
routing optimization), build nests, sort their brood (eggs are
sorted and grouped by developmental stage [17]), manage their
dead (experiments involving the random distribution of dead
ants will result in workers forming clusters within a few hours
[40]), divide their labor (inspiring task allocation solutions), self-
assemble (physically connecting to build bridges, rafts, walls and
bivouacs [12,18]), make collective decisions, come to a consensus
(deciding between the shortest of two paths [12]) and implicitly
cooperate (i.e., to carry heavy food). Similarly, emergent
phenomenon readily occurs in animal societies, such as
schooling fish [12,14,15,25,40,41], flocking penguins [12],
migrating birds [3,12,25,40,41], herding gazelles [41] and many
other social animals [25]. Crowds [15,25] and mob mentalities
[7] are some examples of emergent phenomena which often
occur in human societies [6,36].

According to Physicist David Bohm (in his theory of implicate
and explicate order [42] which elegantly resolves long
unanswered questions in the field of Physics such as how is
quantum physics and general relativity unified? How does
quantum entanglement allow for faster than light
communication? etc.), reality itself is nothing more than an
emergent phenomenon! The explicate order (each temporal
moment in our spatial reality) is a surface phenomenon-an
emergent projection that temporarily unfolds out of an
underlying implicate order [43]. This idea concurs with earlier
revolutionary ideas supported by Physicists Stephen Wolfram
[44] and Richard Feynman, which state that the entire Universe
is parallel processing information via emergent, spatiotemporal
computational structures, like those found driving emergent
phenomena in cellular automata.

Important conditions to establish emergence

Sociology is not just applied psychology, just as psychology is not
applied biology, nor is biology applied chemistry, neither is

chemistry applied physics, nor is physics merely applied
quantum mechanics [34]; The whole is greater than the sum of
its parts. The extra bit is the consequence of how the parts
interact [34]. At the ground level, the action of one individual
activates another individual, like a chaotic chain-reaction (which
is why this process is sometimes referred to as chaining). In this
manner, a system of individuals (who only require rudimentary
reasoning [40] themselves; enough to react to external stimuli) is
able to behave intelligently as a collective by executing
sophisticated rule-chains constructed via the complex, parallel
chaining of numerous such individuals. However, chains of
interactions won’ t necessarily produce emergent phenomena
[34]. Or if it does, it may not necessarily be emergent behavior
which is intelligent and useful. Some systems only exhibit
globally emerging patterns which seem to be no more than
aesthetically intriguing rather than more advanced emergent
behaviors like the type whereby individuals can self-organize to
solve complex task, perhaps only producing patterns as a side-
effect (e.g., ants foraging, termites constructing nests, etc.).

If a systems behavior can re-influence the original system (i.e.,
there is feedback [6,13,21,34]), then the systems behavior begins
to modify itself dynamically, becoming nonlinear in the process
[34]. Positive feedback reinforces and amplifies certain behaviors
[13] (promoting the creation of structures via a snowball effect
[21]) whereas negative feedback is like a regulatory mechanism
[21] which stabilizes patterns and counterbalances positive
feedback [13]. Nonlinear [23,26,34] interactions [23,34] are a
key element to establishing intelligent, emergent, self-organizing
behaviors. This (coupled by an element of randomness [13]) is
why emergent behavior is near impossible to predict [6] at the
level of the individual. Thus, the secret to unveiling emergent
phenomena does not lie within the swarms individuals, but
within their (spatio-temporal) interactions [6,12,15,26,34].

Understanding emergent behavior using cellular
automata

Similar lines of research into understanding, controlling and
predicting emergent behavior have been conducted using a
number of distributed systems other than robotic swarms. The
most popular distributed systems used (due to its relatively
simple nature) are Cellular Automata (a group of virtual cells
with a discrete size conserved number and fixed position. They
can only really change their states, and the simplest CAs only
have binary states; dead or alive; black or white; etc). The
majority of these studies is focused only in the one-dimensional
(binary) CA [45] which is just a 1D row of virtual cells (as
opposed to a 2D lattice) since it is important to study how this
phenomenon emerges in even the most basic complex system
[46]. Using a simplistic representation that maintains the most
important features of the complex system being modeled [5]
makes the task of understanding a complex concept like
emergent computation easier and clearer [10,31,39]. The general
principles behind how complexity arises from simple rules and
many of the secrets behind emergent computation have been
revealed through studying 1D CAs [5,6,47]. A lot of progress was
made when studying 1D binary CAs evolved via a Genetic
Algorithm (GA) [10,48,49] to perform intelligent emergent
computations such as calculating its own global density (the

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 6

classification task); i.e., the CA must decide which state are the
majority of the cells at the start (the density of its initial
configuration) and then slowly make the CAs final
configuration (output) into that state globally (e.g., if the
majority of cells in the initial configuration were alive, then the
final configuration should transform all cells to become alive,
and vice versa) [49].

Bare in mind that this is no trivial task for a 1D line of fixed
cells which can only communicate its binary state to its nearest
neighbors. Nevertheless, researchers have also extended their
studies of emergent phenomena to 2D Cas [24] (an example of
an emergent phenomena in 2D CAs is object boundary
detection in images. A 2D CA can achieve this fairly easily using
the majority rule - i.e., a cell adopts the same state as the
majority of its neighbors [24]). CAs update their cells states
based on predefined update rules (i.e., a look-up table which
defines which state a cell should change to base on its current
state and the states of its neighboring cells [37]). Some update
rules have been noted to produce Emergent behavior, while
others do not. Thus, different update rules have been classified
into four distinct classes [44] based on the global CA behaviors
they produce.

Class I: Fixed point attractors and class II: periodic-attractors
both have short-lived transient times and converge too soon to
produce dynamic behavior; quickly collapsing into orderly
homogeneous (class I) or heterogeneous (class II) states. Class
IV: strange-attractors (a.k.a. the edge of chaos [50]) has a long,
indefinite transient time and eventually converge into complex
states; although it is globally disordered, embedded sites of order
emerge. Class III: chaotic-attractors have infinite transient times
and never converge because it diverges into random, aperiodic
states of chaos. Only classes III IV can create the correct
conditions for emergent behavior because emergence can only
occur in the fluid transient time before the system solidifies into
a converged state [50-54]).

Collision-based computing

Collision-based computations [28] (a.k.a. computational
mechanics) offer a convincing theoretical explanation to explain
intelligent, self-organizing, global behaviors (i.e., make decisions,
remember, classify, categorize, generalize, recognize, problem-
solve, correct-errors, etc. [26]) in cellular automata [10]). The
theory views complex systems (including robotic swarms) as
decentralized networks of emergent information processors [26];
architecture less computers (as opposed to conventional, von-
Neumann type, central-processing computers). Individuals
within the complex system indirectly (and unknowingly)
communicate with one another via an embedded computational
layer composed of dynamic, spatio-temporal structures that serve
to parallel process information across the entire complex system
[10,24]. This means that even in the absence of a central
controller and access to global information, individuals within
the distributed system can still communicate globally via this
embedded, computational layer. The essence of collision-based
computations are nonlinear logical operations [26] performed by
emergent information processing elements; spatio-temporal
patterns which parallel process information [10]. Without these

emergent spatio-temporal patterns, information processing
could not occur, since the alternatives would either be too
ordered and unchanging to transport or modify information
[18], or too dynamic and changing to store information long
enough to modify or transport it. So what exactly are these
fundamental spatiotemporal patterns and from whence do they
emerge?

Embedded spatio-temporal structures

During investigations into the emergent behavior of 1D CAs,
solid, long and narrow structures [47] (termed particles) were
seen emerging from localized dynamic regions of chaos (chaotic
regions seem to be favoured over static, orderly regions due to
their random perturbations which act as nucleation sites [47]
from which the embedded, particle structures grow via smaller
proto-particle structures [47]). Similar discoveries were soon
made in 2D CAs too (Conways Game of Life is a famous
example of a 2D CA with a rich variety of spatiotemporal
patterns more commonly known as gliders, the 2D CAs
equivalent of a 1D CAs particle). These emergent patterns (also
referred to by various names across the vast yet scattered body of
research literature attractors/stable points [26], distributed
embedded devices [6], vehicles [47], embedded structures [28],
momentary wires [29], signals [19,29,39,47], communication
blocks [19], virtual particles [22], gliders [28,37,47,55], gestalts
[26], domain boundaries/walls [10], mobile self-localizations
[28], wave fronts/fragments [28,29,55], travelling localizations
[55], compact configurations of non-resting states [55], active
zones [20], dynamic computational mechanisms [17] etc.) are in
actual fact boundaries between adjacent, localized,
homogeneous regions [24]. The types of regions which border
one another determine the pattern of the spatiotemporal
structure produced. The space-time conditions of the system
must be complex and chaotic enough to encourage multiple
regions to exist (as is the case with Class III and IV CAs). If the
entire system is too static and ordered (as with Class I and II
CAs) there can be no bordering of localized regions of order,
and thus no spatio-temporal structures or emergent behavior.
Over time, as the dynamics of the complex system change, so
too do these local regions (changing shape, expanding or
shrinking, merging with other local regions like two bubbles
suddenly combining, etc.) thus causing their boundaries to shift
(appearing as if it the spatio-temporal structures are propagating,
colliding, transforming, etc). These spatio-temporal structures
(regional boundaries) are not explicitly represented in the system
[24] since they are embedded within the nonlinear interactions
of individuals and are only revealed via analyzing the spatial
interactions over time. We could even say that these spatio-
temporal patterns are the underlying dynamics of emergent
behaviors [10,15] and the fundamental processors [10] of
emergent collision-based computations and the driving force
behind global emergent phenomena (the interactions are merely
the carriers or media in which they exist and the links
themselves only existing as a result of the physical individuals
interacting, making it a 3rd order entity, or 2nd order emergent
phenomenon).

Representing and storing information: Spatio-temporal
structures (e.g., virtual particles in 1D CAs, or gliders in 2D

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 7

CAs) come in different, unique patterns, each representing
specific pieces of information [10,19]. The data are stored in the
system so long as these structures persist (like a memory
[10,19,39]). Researchers studying the computational mechanisms
of 1D CAs managed to identify five unique stable particles
(spatio-temporal patterns), which they labelled as [10], and
curiously, one unstable particle [10], which suggests some spatio-
temporal structures spontaneously change (i.e., their patterns or
velocities) without any external influences. However, the
majority of spatio-temporal structures are stable and require an
external event to drive a change.

Transferring information: Information is transferred across the
system via the spatio-temporal pattern propagating over time
[10,19,24]. These spatio-temporal structures are essentially
emergent signals used to process, store and communicate
information across the system, with its medium of travel being
the system itself [19]. Therefore, almost any part of the mediums
space can be used as a (momentary) wire-a trajectory of (a)
travelling (spatio-temporal) pattern [28,29]. Each spatiotemporal
structure will have a set velocity (speed and direction) at which it
propagates through the system [10,19,24].

Modifying information: Information is modified if the spatio-
temporal pattern representing it becomes modified and so to
changing a pattern is how to change data [10,19]. Spatio-
temporal patterns (as well as their velocities) are most commonly
changed via collisions between two or more spatio-temporal
structures [5,18,51]. Collisions change the structures velocity and
pattern according to an intrinsic logic specific to that system
[5,18,51]). Interestingly, collisions always follow a deterministic
logic (e.g., spatio-temporal patterns and always produce spatio-
temporal pattern upon collision). This means that spatio-
temporal structures travelling and interacting (i.e., colliding) in
space form the basic logical operators of (dynamic, massively-
parallel, architecture-less, collision-based) computation
[10,28,29,47]. Logical collisions correspond to computations
that transform the data. Logical operations occur at the place
where the spatio-temporal structures collide, annihilate, fuse,
split or change direction (these sites correspond to the logical
gates) [29] and various forms of logical gates are realizable
[28,29] (including xor gates and diodes [29]). The presence (or
absence) of spatiotemporal structures represent the Boolean
truth values of logic gates [28,29]. Collision-based logic-gates
typically have inputs corresponding to the presence of the
colliding spatio-temporal structures. Its outputs correspond to
all the possible outcomes of their interaction, including and
output resulting from non-collisions (i.e., the output will be the
same as the input) [29]. To generate dynamics representing basic
logical operators (is) the foundation of computation [47].

The research into emergent phenomena in CAs has inspired the
theoretical foundations of our investigation into the underlying
mechanics of emergence of robotic swarms. It is not
unreasonable to hypothesize a parallel system of embedded
spatio-temporal structures underlie the emergent behaviors of
robotic swarms since there have been odd reports to suggest that
such computational mechanisms exist for complex systems other
than CAs. For example, structures that propagate in a coherent
direction and speed [55] have been experimentally manifested in

a chaotic 2D chemical media (BZ mediums [28]) and its
behavior and computational dynamics are comparable to those
of 2D cellular automaton. As wave-fronts in the chemical media
expand, their collisions produce new wave-fragments in a
deterministic manner [55]. Thus even physical media are capable
of collision-based computing, since the collision of
spatiotemporal structures emerging in their space-time evolution
are represented by interacting wave fragments geometrically
constrained to the chemical medium [28]. Unlike simulated 2D
CAs, however, the emergent structures in the chemical media
disintegrate after some time. Stable spatio-temporal entities
(more popularly referred to as gestalts [26]) have also been
observed emerging in the flow of (discrete or continuous) phase
spaces in artificial neural networks. Gestalts store information in
their locally stable structural configurations and act as a form of
memory [26]. Various classes of flow patterns are possible [26]
and likewise, if these local stable points can be induced (or
manipulated) the neural network could be controlled and a
specific memory could be assigned [26].

TEST METHODOLOGIES

Computer simulations

The swarm’s emergent behavior eventually needs to be analyzed
for spatio-temporal structures and early analysis favours
computer simulations [6] because the simplicity offered by
computer simulated models can be advantageous; realism is not
necessarily needed or helpful [56]. Simplification allows us to
focus on features which truly concern us and can lead to greater
insights. Furthermore, the cost of scaling up the number of
robots is not a main concern for multi-robot simulators [12] and
since a swarm can behave very differently at different sizes,
having the freedom to increase the number of robots in a swarm
is quite important during initial experimentation. Lastly, the
exact same experiment can be repeated very easily in simulations
and temporal elements can be manipulated if needed (i.e.,
paused, sped up, etc) to allow for quick overviews of a swarms
developmental patterns or more careful observation of pivotal
points during experimentation [30,36] (Figures 1-5).

NetLogo

The robotic swarms used in this project were all evolved,
modelled, simulated and analyzed using the multi-agent
programming language called NetLogo. NetLogo is the language
of choice for modelling complex adaptive systems and emergent
phenomena [36] because it was designed for the efficient
computation and representation of thousands of heterogeneous
individuals running in parallel [36].

Modelling the robotic swarm across space

Particle swarm representation: The most straight forward way
of modelling a robot swarm in a computer simulation is to
represent each robot as a single point (a particle) which can
move around on a 2D landscape. By representing the robots as
simple point particles, we minimize the computational burden
[36] to allow resources to be directed to more important areas of
the simulation (i.e., the execution speed, etc.) [30].

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 8

Dynamic network representation: The great number of
interacting individuals in a robotic swarm can be viewed as a
dynamic communication network [11,12], (each simple robot
acts as a mobile node that become spatially and/or temporally
interconnected via shortrange communications) and thus it is
not uncommon to refer to robotic swarms as distributed, robotic
sensor networks [2,11] or mobile, (parallel) computer networks
wherein robots act as embedded sensing and processing
elements in the environment [2,11,16]. Viewing the swarm as a
dynamic network (wherein each node represents a robot and
each link represents the local robot influences on one another)
can aid understanding of how the swarm is interconnected.
Explicit interaction refer to direct actions or interactions
between individuals [3,12,14] (i.e., robot-robot interactions
[8,14]) including direct communication via close-range sensors
within a local neighborhood [16] (e.g., shining light [15], colored
LED displays, infrared, audio and acoustic signalling, coil
induction, radio-frequency broadcasted messages, body-language,
sign-language, colored patterns on robots [2], robot recognition
[32], and other indirect clues such as the perceived density of the
robot population or net force of robots on an object [12], etc).
Implicit interactions, also known as robot-environment
interactions [8,12,14] or stigmergic communications [2,8,40],
refer to indirect links formed after a short time delay from the
robots initial signal. Since the external environment can also act
as a stimulus to affect the behavior of individuals [47], the
environment can be manipulated by structurally modifying it [8]
(i.e., changing its shape, temperature gradient [12], etc) removing
or adding material [17] (i.e., ant-inspired chemical pheromone
trails [6,12,15,16,34], etc), anything to leave a trace of an
individual’s event for communicating with other individuals at a
later time (an indirect interaction). For instance, termites create
terrain configurations that stimulate other termites who
encounter it to add more building material [17]. Interactions
continually change along with the neighbors encountered (i.e.,
network links are continually formed and broken) [9]. By
environmentally encoding events in this way, communication
signals can be temporally frozen at that location to eventually
influence other robots. Stigmergy cleverly converts temporal
data into spatial information (as the time delay extends the
spatial range of the link connecting mobile nodes) and therefore
also has the potential to compress spatial information into
temporal data [31]. Implicit interactions (indirect nodal links)
allow for a more complex network structure, giving the swarm
(dynamic network) greater flexibility and greater potential to
compute more sophisticated emergent behaviors [8].

NetLogos inbuilt agents (referred to as turtles) were used to
represent the robots of the swarm. The robotic swarm is
populated with robots which are randomly positioned (random-
xcor...) in the environment (an amount specified by swarm-size-a
user-defined variable). The triangular shape was used to indicate
the orientation of the robots.

to setup

create-robots swarm-size [set size 2 setxy random-xcor random-
ycor]

The robots operate within an unbound 2D world which wraps
around vertically and horizontally. The obstacles and goals are

also modelled using turtles; however, to differentiate them from
robots, they are given a different breed (breed [obstacles...]) and,
unlike robots, remain static (although by modelling them as
turtles, there is potential in future testing for the obstacles to
move around; creating a dynamic environment).

Breed [robots robot]

Breed [obstacles obstacle]

Breed [goals goal].

Figure 1: Right: the robotic swarm at a single instance in time (with
robots represented by triangles). Left: A 3D view of the swarm
(whereby the additional dimension is used to display the swarm’s
temporal changes and expose any underlying spatio-temporal patterns).

Figure 2: The robotic swarm modelled as a dynamic network. The
network nodes represent the position of the robot while the
connections represent their local influences on neighboring robots.

Figure 3: Examples of the robotic swarms emergent behaviour using
the voronoi rule-set. Left: At start, all robots (represented by triangular
particles) are randomly scattered across an environment with obstacles
(represented by circles). Right: At end, the swarm self-organizes itself to
boundaries (resembling cell walls) segregates each obstacle (resembling
nuclei).

Modelling the robotic swarm across time

When the temporal element is added to the spatial analysis (i.e.,
analyzing the development of the swarms behavior over time) an
extra dimension is required to represent this change over time.
In the case of 1D CAs, the space-time diagram is a 2D surface.
However, in the case of 2D CAs, the space-time diagram is a 3D
surface [24]. Since a particle swarm representation or a network
representation are both 2D representations, the added
dimension required for the temporal element of the spatio-

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 9

temporal analysis will have to be represented via a 3D
representation.

Robotic swarm behavioral design

Each robot runs on a simple set of rules which govern how the
individual reacts to localized changes or events [32]; in other
words, how to interact with nearby robots and the environment.
In swarm robotics, there are still no formal or precise ways to
design individual level behaviors that produce the desired
collective behavior [12]. In general, however, emergent behavior
in swarm robotics can be modelled from two angles: the
microscopic level (a bottom-up, behavior-based approach) and
the macroscopic level (a top-down, evolutionary based approach)
[12].

The Behavior-based approach: The designer will seek out that
the simplest, nonlinear behavior that produces the desired
complex global behavior [34] using their personal intuition [12],
trial and error and continual tweaking. The bottom-up approach
(a.k.a. exploratory based method [56]) is somewhat similar to the
scientific method [7]. The skill of identifying the root causes that
lead to desired global behaviors is still largely dependent on the
designer’s intuition; however, there are some approaches that try
to determine these root causes in a principled way [8]. The
Voronoi rule and the Virtual forces rule and are two example
swarm behaviors designed in this way.

#THE VORONOI RULE

Initially, a number of obstacles (displayed as circles) are
randomly positioned around the environment.

setup-obstacles [

Create-obstacles no-of-obstacles [set shape "circle" set size 2 setxy
abs (random-xcor) random-ycor]].

The robots (displayed as triangles) are also positioned
randomly around the environment.

to setup-swarm

create-robots swarm-size [set color grey set xy abs (random-xcor)
(random-ycor)].

#Each robot runs the same rule (the rule consists of the robot
measuring the distance to its closest obstacle).

to-report nearby-obstacles

report obstacles with-min [precision (distance myself) 1].

If there is only a single, closest obstacle, the robot will move
slightly forward toward it (fd 0.04) after which it turns at a
random angle.

to swarm-rule

ask-concurrent robots [

if count nearby-obstacles=1 [

if(xcor >1) [fd 0.04 set color [color] of one-of nearby-obstacles]]

rt 0.5-random-float 1

]

Robots will continue to execute this simple rule until they end
up at a location where there will be more than one closest
obstacle (i.e., two or more obstacles which have the same
distance from the robot). At this point the robot stops moving.
This behavior causes the swarm to equally segregate obstacles by
self-organizing into boundaries between all obstacles (creating a
pattern resembling a voronoi map).

Figure 4: Three snapshots in time of the robotic swarms formation
when running on the virtual-forces behavioral rule. Regardless of the
individual robots starting positions, the robots always self-organize into
orderly lines as shown above.

Figure 5: A swarm rule being evolved to produce emergent global
behaviors.

#THE VIRTUAL-FORCES RULE

#On each iteration, robots calculate all the surrounding virtual
forces coming from neighboring robots as well as the repulsive
virtual forces from walls and other obstacles and attractive
virtual forces from goals and chemical heat trails left in the
environment by other robots.

to update-vfmodel

robot-forces

obstacle-forces

goal-forces

environmental-forces

#To calculate the virtual forces coming from other robots, a
robot will query all neighboring robots, goals and obstacles
within a certain radius from itself.

#The robots local communication is limited to the maximum
range of its sensors (a user-defined variable). Each neighboring
obstacle will have a negative force to repulse the robot (set delta
1.0), whereas goals will have a positive force to attract them (set
delta 1.0).

#Neighboring robots have a positive (attractive) virtual force by
default to encourage the swarm to cohere and stick together.
However, neighboring robots closer than a certain radius

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 10

(known as the robots personal-bubble) have a negative (repulsive)
force to avoid collisions.

to robot forces

Ask other robots in-radius sensor-range [

set delta 1.0 if (D<personal bubble)

[set delta 1.0]

#The magnitude of the virtual force (F) is calculated as the
squared inverse of the neighboring robots distance (F=1/D^2)
so that the closer the robot is, the stronger the virtual force gets.
This was found to provide more stable swarm behavior than a
linear inverse relationship (F = 1 / D).

let F (rbt-strength/(D*D))

#The virtual force is then used to update the robots velocity
which is used to update the robots position. This process is
applied to all robots and repeated at each time step.

Turtles-own [Fx Fy delta]

ask myself [set Fx (Fx+(cos (Th+delta*heading)*F))

set Fy (Fy+(sin(Th+delta*heading)*F))]

To update-motion

facexy (xcor+Fx) (ycor+Fy)

setxy (xcor+Fx) (ycor+Fy).

#When first deployed, the robots move chaotically and react to
the virtual forces they experience locally. The swarm is very
dynamic at this stage and able to easily flow around obstacles (its
state is analogous to a fluid). Eventually, all the virtual forces on
each robot become balanced and when the net force on each
robot is zero and the swarm is in equilibrium, the robots no
longer move. As if crystallizing, the swarm comes to a rest in
formations resembling straight lines (analogous to a solid
polymer) or regular lattices (analogous to a solid crystal).

The evolutionary-based approach: One of the main problems
with designing robotic rules manually is that it often taking a
long time to refine rules before yielding any successful results.
Automatic design methods (like Genetic Algorithms) can be
considered top-down methods because, in theory, the process is
driven by the global goal [12] i.e., the desired holistic-
characteristics of the entire swarm [12]. The perspective is
shifted away from the individual to the higher-level of the
collective [12]. Unlike bottom-up approaches (i.e., Behavior
based approaches) which focus on designing at the level of the
local rule, incrementally refining it based on careful
observations of the global effects they produce when thoroughly
tested [12], top-down approaches (a.k.a. Phenomena based
approaches [56]) focus only on the big picture, designing at the
global level, some desired model of swarm behavior, which is
then used to guide and direct a quick, automatic search through
a sea of potential rules until some are found which can produce
the desired global properties.

Genetic algorithms: A Genetic Algorithm comprises of an
initial set of candidate solutions encoded into genomes. At each
generation the fitness of the solutions are determined. Genomes

are then paired off to reproduce via crossover and mutation (the
fitter candidates being given higher preference in mating to
drive the evolutionary process toward the goal). The offspring,
along with a small percentage of the fittest parents from the
previous generation, survive onto the next generation while the
remaining dies off. The process is iterated until a generation
evolves to meet an acceptable level of fitness.

Fine-Tuning the hyper-parameters of a Genetic algorithm: The
genetic algorithm can find a desired solution fairly efficiently if
suitable representational methods, selection pressures (fitness
function) and hyper parameters (e.g., population size,
probability of mutation, etc) are fine-tuned. The automated
search process cannot be applied blindly and effortlessly [23].
Designing the artificially intelligent algorithm well and fine-
tuning its parameters determines how quickly, efficiently and
optimally the solutions are evolved. It is not sufficient to start
somewhere completely random and hope to evolve a solution
somewhere in phase space [30]. Factors to carefully consider
when designing a Genetic Algorithm include: (a)
Representational methods (Genotype and Phenotype), (b)
Selection Pressures (Fitness functions), (c) Exploitation
(Crossover) and Exploration (Mutation) of the search space, (d)
Memory to allow the influence of past solutions (inheritance).

Representational methods (Genotype Phenotype) A
chromosome or genotype refers to the encoded solution which
the genetic algorithm can search and evolve [8]. The phenotype
refers to the coding method which dictates how the chosen
representation (directly or indirectly) maps to the real solution
(i.e., the rule set used by the robot) [57]. It is used by the genetic
algorithm during its search to translate encoded solutions into
their corresponding behaviors so that evolving solutions can be
evaluated (i.e., to know if the solutions are getting closer to the
desired emergent behavior). A common example of a
representational method is the bit string [24] or binary string
[31] (the candidate solution encoded in binary-a single line of 0s
and 1s), the length of which may vary depending on the size of
the solution being represented (e.g., 8 bits can represent a
number in the range −10 to +10. 128 bits can represent a single
transition rule for a 1D binary state CA of radius 3 [31]).

Hexadecimal may be used instead of binary to allow for shorter
string lengths [57]. Alternatively, the encoding can be completely
specified by the designer, such that the genotype may consist of
different letters of the alphabet (e.g., A, B, C, D) [57]. The
template representation [31] is an example of a user-defined
representation to suit the solution being encoded. A unique
feature is the inclusion of a special character to represent any
option (i.e., if the string is binary, then would mean 0 or 1).
This is a makes the representational method far more expressive
by cleverly allowing for generalizations (e.g., the string [0,,] could
mean any of the following: [0,0,0], [0,0,1], [0,1,0] or [0,1,1]). The
template representation was found to produce superior
performance to the bit string traditionally used for representing
Cellular Automata [31].

Selection pressures (Fitness Functions) Along with selecting a
good representation, selecting an appropriate fitness function
(the evaluation method to calculate how a candidate solution
ranks against the others [24]) greatly influences the success of

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 11

the evolutionary process [57]. An example fitness function
explored was based on snap (the 4th order derivative of position,
i.e., the rate of change of acceleration). Snap is often used to
measure how much an object is shaking (the higher the snap,
the higher its shakiness). Therefore, if robots have lower snaps,
smoother swarm behaviors emerge, whereas higher snaps
produce incoherent, erratic swarm behaviors since each robot is
changing their motion very suddenly and violently. Exploitation
(Crossover) and Exploration (Mutation) of the search space The
initial generation consists of randomly sampled solutions which
the genetic algorithm modifies (using specific evolutionary
search techniques such as crossover and mutation [24,57]) as a
way of exploiting the current best solutions to intelligently
navigate through the search space [24].

#CROSSOVER

#Once all individuals in the population have been evaluated
(and ranked), their fitnesses are used as a basis for selection [57].
Crossover involves a pair of (parent) candidate solutions
exchanging genetic material (i.e., mating/sexually reproducing)
[57] by stitching together pieces of their chromosomes to form a
new, unique (offspring [41]) candidate solution.

#A random number between 1 and the maximum length of the
genome (L) determines the location to split each parent genome
(split-point).

let split-point random L

#For every two parents who reproduce, both possible
combinations were explored. Thus two children are always
produced (e.g., A-A & B-B A-B & B-A).

to new-child [split-point strategy_dad strategy_mum] hatch 1

[set strategy crossover split-point

strategy_dad strategy_mum

set th heading

set v 0

set a 0

set fitness 1000

set color one-of base-colors

]

to-report crossover [split-point strat_1 strat_2]

set strat_1 sublist strat_1 0 split-point

set strat_2 sublist strat_2 split-point

(length strat_2)

let strat_mix sentence strat_1 strat_2 report strat_mix

#Occasionally they will combine the best genes of both parents
[30] and produce fitter candidate solutions (thus driving the
evolution).

#Mutation

#Repeated reproduction with similar genetic information
increases genetic homogeneity [47] which can lead to the

algorithm getting stuck at a local minima in the search space
[30]. To avoid this and encorage exploration of the entire search
space, a random element is introduced to add some variety back
into the gene pool. Parts of the offsprings chromosome are
randomly changed to a different value in a process known as
mutation [24].

to respawn-and-mutate

let strategy_dad strategy

hatch 1 [

setxy random-xcor random-ycor

set heading random 360

set strategy mutate strategy_dad

set th heading

set v 0

set a 0

set fitness 1000

]

die

#One of the elements in the genome is picked at random and
replaced (replace-item(random...) with a random, new value
(one-of command).

to-report mutate [strat]

set strat replace-item (random (L - 1))

strat one-of commands

report strat

Memory to allow the influence of past solutions (Inheritance):
There remains a small possibility that the offspring will not be as
good as their parents. Thus, elitist inheritance allows the fittest
candidates from the previous generation to survive on to (be
copied into) the next generation along with all the offspring
[24,31,57]. Inheritance can also be thought of as a way for the
genetic algorithm to remember best candidate solutions
searched in the past and thus act like a memory to help improve
the efficiency of the search [31] (Figure 6). Using an excessive
memory, however, can actually inhibit the evolutionary process
and so selecting an appropriate amount of memory is thus
important for effective problem solving [31].

to elite-replace-inheritance

let number-to-replace round ((1.0 - percentage-elite)*count
turtles)

ask min-n-of number-to-replace turtles [-1 * fitness] [die]

let best-turtles turtle-set turtles

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 12

Figure 6: Left) using only crossover, the swarm stops evolving
prematurely as it gets stuck at a local maxima. Center) using only
mutation, the swarm changes strategy randomly and fails to evolve.
Right) using crossover with mutation (10 per cent) allows the swarm to
evolve far fitter solutions toward the global maxima.

ANALYSIS

Upon analyzing the spatial interactions of robotic swarms over
time, an intricate subsystem of spatio-temporal patterns were
revealed (emergent signals used to process, store and
communicate information across the decentralized system)
embedded within the medium of the system itself. Thus
confirming our initial hypothesis that there exist embedded
computational mechanics (i.e., the spatio-temporal patterns)
which govern the emergent behavior of robotic swarms. This
section categorically presents examples of the various types of
spatiotemporal patterns discovered, as well as some of their
computational mechanics, with some commentaries to explain
how each feature is believed to contribute toward the robotic
swarms emergent behavior. The various findings are then
compared against past research (conducted in Cellular
Automata-wherein the theory of spatio-temporal structures and
embedded computation was initially developed).

There were four distinct types of spatio-temporal patterns
discovered during our analysis (which seem to correspond with
the four classes of Cellular Automata): 1. Type I: Static Patterns
(corresponding to Class I CAs: Fixed Point Attractors) 2. Type
II: Stable Patterns (corresponding to Class II CAs: Periodic
Attractors). 3. Type III: Non-Patterns (corresponding to Class III
CAs: Chaotic Attractors). 4. Type IV: Semi-Stable Patterns
(corresponding to Class IV CAs: Strange Attractors).

Type I: Static patterns (class 1: fixed-point attractors)

The first type of spatio-temporal pattern is static by nature; it
remains unchanged over time (often shown as a straight line on
the 3d swarm representation (Figure 7). This is commonly
formed when a single robot becomes disconnected from the
swarm and, having no external influences to react to nor virtual
forces acting on it; it remains in the same position over time.
There were also examples of static patterns being formed via
pairs of robots (depicted as two parallel straight lines on the 3d
swarm). Sometimes they can even form via robot trios, although
it seems that static spatio-temporal patterns become rarer to find
as the number of robots composing it increases. This may be
because the positions for robots that robots settle into require a
perfect symmetry to balance each other’s influence (even a slight
perturbation is enough to shift a robot out of sync and thus
cause the others to become unbalanced).

Figure 7: A robotic swarm exhibiting Type I Spatio-Temporal Patterns,
visible as static lines over time (left). The robotic swarm is locked in a
crystallized lattice, analogous to being in a solid state (right).

Type II: Stable patterns (class 2: periodic attractors)

The second type of spatio-temporal structure is a stable (or
cyclical) pattern (repeating the same, stable movements over
time (Figures 8 and 9) which corresponds to periodic attractors
in CAs. These patterns are most commonly formed from robot
pairs caught in a stable dance around one another, reminiscent
of binary stars moving back and forth around one another. The
exact shape of the pattern produced may vary.

Figure 8: Sometimes less stable patterns collapse into static, type 1
spatio-temporal patterns. This may occur if there are two or more
robots affecting one another and their influences balance and cancel
each other out, causing them to collapse into a state of equilibrium
after an initial chaotic dance.

Figure 9: Two robots (red and purple) form a type II spatio-temporal
Pattern shown over time as a cyclical, periodic twirl. The swarm in this
state is dynamic yet moves in a repetitive, predictable manner unlike
the nearby type IV pattern produced by thee green and blue robots.

Type III: Non-patterns (class 3: chaotic attractors)

The third class of spatio-temporal pattern is when the swarm
does not form any pattern at all; the robotic movements and
interactions are unstable and extremely random such that no
movements are exactly repeated over time (Figure 10). It is in a
chaotic state which changes unpredictably. When the swarm is
in this state its dynamics resemble a fluid, which is in direct
contrast with the solid-like stillness of the first two types of
spatio-temporal patterns.

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 13

Figure 10: A type III spatio-temporal Pattern, showing a lack of
patterns (”chaos”) over time. The swarms are highly dynamic and
quickly change shape, similar to a turbulent fluid.

Type IV: Semi-stable patterns (class 4: strange attractors)

The fourth and final type of spatio-temporal pattern discovered
is the semi-stable pattern which corresponds to “ strange
attractors” (Figures 11-13). They are not completely random (like
type III) nor completely orderly and repetitive (like types I and
II). They balance delicately on the border of stability; between
stable and unstable; between order and chaos. This state is one
of the most interesting and is also referred to “the edge of
chaos” because the swarm can easily drift in and out of being
borderline-stable (types I or II) to wildly unstable (type III). To
give an analogy in line with the solid and fluid descriptions
given for the first three types of patterns, type IV patterns would
most closely resemble the turbulent vortex structures that
sometimes appear within fluids (and then just as quickly
disappear again).

Figure 11: Type IV spatio-temporal patterns. These patterns are also
known as ”Strange” attractors. The pattern is complex; somewhat
collected, yet never repeating; resembling a localized pocket of chaos.

Figure 12: The exact shape and size of type IV patterns can range from
just one robot or large clusters of robots. The swarm steadily moves
and changes, yet in a fairly unpredictable manner.

Figure 13: A type IV spatio-temporal pattern splitting into two new
type I spatio-temporal patterns. This split also causes the information
being carried to transform.

Stationary patterns

Solid, stationary spatio-temporal patterns (which resemble a
vertical line or pattern) represent robots that remain at or
around a particular x-y coordinate. Such patterns give the swarm
stability and fix it into a specific formation or shape (which can
serve as a memory - assuming information has been encoded
into the specific patterns and formation of the swarm). It has
been found that pieces of information are represented through
the pattern of the spatio-temporal structure (and thus when the
pattern changes, so does the information it is representing).
Therefore, information can only be stored in the system if it
remains unchanged as a type I (fixed-point static) pattern or a
type II (periodic stable pattern). Non-patterns (type III) cannot
possibly represent information (since they have no recognizable
patterns to represent the information), yet they still serve an
important computational purpose. Firstly their fluidity gives
them the freedom to move across space and time and influence
other parts of the swarm, changing nearby spatio-temporal
patterns (and the information they represent) in their paths.
Secondly, they act as nucleation sites for random seeds form
into patterns (i.e., out of the chaos, spatio-temporal patterns may
suddenly form or transition from one form to another) (Figure
10).

DYNAMIC PATTERNS

Diagonal spatio-temporal patterns represent robots slowly
moving around the environment while maintaining a shared
formation relative to one another. Dynamic patterns serve to
transfer information (stored in spatiotemporal patterns and
formations) across the swarm, which may then influence a
change in other patterns (and their information) through
various collision-based computations (i.e., merging, etc) which
shall be looked at shortly (Figure 14).

Figure 14: Two interlacing streams (type II spatio-temporal patterns)
travelling across the swarm over time. The patterns act as temporal
structures which store and propagate information to other parts of the
swarm.

Merging splitting patterns

Occasionally, two or more spatio-temporal patterns will collide
and merge together to form a new, single pattern. This can be
viewed as a collision-based computation (i.e., a computational
mechanism which allowed information to be modified in a
specific way). Information stored as a single spatio-temporal
pattern may also split apart into two or more spatio-temporal
patterns (each representing new information) (Figure 15).

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 14

Figure 15: An example robotic swarm with its spatio-temporal patterns
over time (left). Two nearby type IV spatio-temporal patterns are
influencing one another and slowly inducing changes without
colliding.

Figure 16: The red and purple robots form a type II periodically stable
spatio-temporal pattern which is slowly decaying as the robots widen
apart. The pattern eventually decays into a type IV semi-stable pattern
like the blue and green robots to its right.

Influencing patterns at a distance

Sometimes a spatio-temporal pattern influences a nearby
pattern; changing its pattern type while remaining unchanged
itself. This type of change can occur if two or more patterns
come into direct contact or within close proximity (in range of
the robots virtual forces). The patterns seem to conserve
momentum as the larger of the two patterns (i.e., the one
consisting of more robots) tends to remain unchanged while the
smaller pattern is more easily influenced (i.e., changed) (Figure
15).

Decaying patterns

The final type of change occurs when a type III or IV pattern
decays into another pattern type without any external
influences, either gradually or all of a sudden. This may occur
because the type III (chaotic) and type IV (semi-stable) patterns
can easily fluctuate due to their innate randomness, unlike more
orderly patterns (type I or II). This is also why a type I (static) or
type II (stable) pattern never decays into other patterns without
an external influence. Decaying is akin to a turbulent vortex
structure (with a definite shape) but constantly changes in size
and shape over time (sometimes even disappearing or
reappearing momentarily). The exact time it takes for a pattern
to decay varies, although smaller cluster sizes tend to have
shorter lifespans than larger clusters, reminiscent of radioactive
half-life decay times (Figures 16 and 17).

Figure 17: Two type II stable spatio-temporal patterns can be seen
interweaving back and forth over time. They both slowly decay and
destabilize into type IV semi-stable patterns.

Assessment

Results which confirm previous research The discovered
patterns lend proof to the theory that computational
mechanisms govern the intelligent, self-coordinating, emergent
behaviors in swarms of simple, reactive robots (similar to how
they govern the emergent behavior in Cellular Automata). The
majority of our findings were in line with previous research
findings related to spatiotemporal patterns (in Cellular
Automata), including: There are many different spatio-temporal
patterns (i.e., different spatial configurations perpetuating over
time) [10,19]. Each pattern represent a separate piece of
information encoded into the system [10,19]. The perpetuation
of spatio-temporal patterns allow for pieces of information to be
stored, like a memory. Data is stored so long as the patterns
persist while remaining unchanged [10,19,39]. Moving spatio-
temporal patterns (i.e., not those remaining stationary but those
which change spatial coordinates over time) transfer pieces of
information across the system [10,19,24]. Changing a
spatiotemporal pattern corresponds to changing the associated
piece of information [10,19]. A number of Stable types of Spatio-
Temporal Patterns were identified [10]. Some unstable (semi-
stable) spatio-temporal patterns also exist [10] Stable Spatio-
Temporal Patterns can change if influenced by an external event
(i.e., collisions with other spatio-temporal patterns) [5,10,18,51].
Unstable (Semi-stable) Spatio-Temporal Patterns can
spontaneously change pattern or velocity without any external
influences [10].

Results not found in previous research, however, some findings
did differ, and even contradict, the findings of prior research
(conducted into Spatio-Temporal Patterns governing emergent
behavior in Cellular Automata) which have provided us with
new insights and additional details about the computational
mechanisms governing the emergent behavior of robot swarms.
These include: Rather than the two pattern types identified (i.e.,
stable and unstable), our research identified four distinct pattern
types; static (fixed-point attractors), stable (periodic-attractors),
non-patterns (chaotic attractors) and semi-stable (strange
attractors). On top of discovering unstable (semi-stable) patterns
that could spontaneously change without any external influence
(decay), our research suggested that the average decay time (half-
life) of semi-stable patterns is proportional to the number of
robots involved in forming the semi-stable spatio-temporal
pattern (i.e., the smaller the pattern, the shorter the half-life).

Our research found that there were far more stable patterns
types than unstable (semi-stable) types when the swarm was in
the relatively rare solid state. However, when the robot swarm is
in its more common fluid state, the chaotic and unstable (semi-

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 15

stable) pattern types dominate the scene, in direct contrast to
the research findings involved with Cellular Automata. As well
as spatiotemporal patterns being modified via collisions with
other spatio-temporal patterns [10,19], our research showed that
spatio-temporal patterns did not require direct collisions to
change. Rather, patterns could influence one another at a
distance proportional to the range of the robots virtual forces.
Our research identified at least seven distinct pattern changes
(i.e., potential logic gates), including; merging (two patterns
combine to form a single, new pattern), splitting (one pattern
becomes two new patterns), absorbing (one pattern disappears
into another larger pattern which remains almost completely
unchanged), annihilating (patterns dissolve into the chaos of a
type III non-pattern), forming (patterns form out of the chaos of
a type III nonpattern), overwhelming (the smaller of two
patterns change while the larger remains unchanged), decaying
(a pattern changes randomly without any external influence).

Our research also seems to suggest that even though chaotic type
III non-patterns are unable to represent, store or transfer specific
pieces of information, they do contribute to the computational
mechanics of the emergent behavior in other ways; namely by
keeping the swarm fluid and thus able to change, having an
external influence on nearby patterns, and providing a chaotic
environment for spatio-temporal patterns to form from or
annihilate into. While our research supports the finding that
emergent behavior is not possible if the swarm is fixed in a solid
state (i.e., composed of purely type I static or type II stable
patterns), it does not limit emergent computation to type IV
semi-stable patterns only. Rather, emergent computation is
possible in any dynamic, fluid swarm state (i.e., at least partially
composed of type III non-patterns or type IV semi-stable
patterns), which includes chaotic (type III) spatio-temporal non-
patterns, which have previously been considered incapable of
emergent computation.

FUTURE RESEARCH

The first three sub-aims were successfully accomplished, wherein
robotic swarms were designed by hand, evolved by a genetic
algorithm and analyzed to uncover (for the first time) the
hypothesized computational mechanisms (spatio-temporal
patterns) believed to underlie the emergent behavior of robotic
swarms. In doing so, we have made significant steps toward our
ultimate goal of intrinsically controlling the emergent behavior
of robotic swarms. In future, we hope to conduct a more in-
depth study of the discovered spatio-temporal patterns
(cataloguing each of their characteristics) and their
computational dynamics (mapping their interactions and
pattern changes) in order to accurately model the swarm ’ s
computational mechanics. Thereafter we hope to conduct an
investigation into possible methods of manipulating these
individual spatio-temporal patterns (i.e., using external stimuli,
modifying the environment, manipulating key robots, their
parameters, the initial configurations, noise, communication
delay, etc). Using these manipulation methods with our
predictive model, we could potentially control the robotic
swarm ’ s emergent behavior via reprogramming its internal
spatio-temporal computations.

The fourth sub-aim (“ understand the computational
mechanics...”) involves studying the spatio-temporal patterns and
gathering enough information about them to accurately model
the underlying computational mechanics of the swarm ’ s
emergent behavior. This includes carefully cataloguing every
spatio-temporal pattern and their characteristic properties (i.e.,
class/type, shape, velocity, etc.) and mapping out each type of
change it undergoes upon interacting with other spatio-temporal
patterns (the collision-based logic). The analysis section of this
project has already shown sufficient evidence that differing types
of spatio-temporal patterns exist. It has also demonstrated some
examples of the typical behaviors and interactions noted.
However, these findings are too general and qualitative to
answer the fourth aim. For this aim, a far deeper analysis is
required in order to obtain the details required to model the
intrinsic logic of the swarms underlying spatio-temporal
patterns.

Aside from being a more systematic and indepth analysis of the
spatio-temporal patterns themselves (the fundamental
information processing elements), it would include numerous
observations being made to map out their computational
dynamics [10], mechanics and nonlinear logical operations
(spatio-temporal pattern collisions and interactions cause the
pattern and thus the information it represents, to change
according to a specific, intrinsic logic [10,26]). Therefore, just
like an artificial particle physicist [18], we would carefully
observe and catalogue each type of pattern and interaction (or
collision) in a look-up table that can later be used to support
sophisticated particle-based information processing [10]. This
approach is known as computational mechanics (or alternatively
collision-based computations) and was first developed as the
result of the research conducted into intrinsic computations
embedded in CA space-time configurations [58,59]. Spatio-
temporal dynamics, representing basic logical operators, (is) the
foundation of (collision-based) computation [47].

The findings obtained from the fourth aim are also significant
in confirming or contradicting previous research findings
(including but not limited to): Basic Logical Operators (i.e.,
Spatio-Temporal Patterns) The total number of static, stable and
semi-stable spatiotemporal patterns (the basic logical operators)
which exist [10,28,29,47]. The associated velocity (speed and
direction) of each spatio-temporal pattern which determines how
information is propagated throughout the system [10,19,24]
Collision-based Logic Gates (i.e., Interactions/Pattern Changes)
Collisions change the spatio-temporal pattern and velocity
according to an intrinsic logic specific to that system (e.g.,
spatiotemporal patterns and always change into spatiotemporal
pattern upon collision) [5,10,18,51]. The inputs of the collision-
based logic gates are represented by the spatio-temporal patterns
present before the interaction [29,47]. The outputs of the
collision-based logic gates are represented by the spatio-temporal
patterns present after the interaction [29,47]. The Boolean truth
values of collision-based logic gates are represented by the
presence and absence of the spatio-temporal patterns [28,29].
The different types of collision-based logic gates which can be
realized via the interaction and change of spatio-temporal
patterns (i.e., not gates, xor gates, diodes, etc.) [29] The total
number of collision based logic gates which occur at the sites

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 16

where spatiotemporal patterns change via various methods (i.e.,
Merging, Splitting, Absorption, Annihilation, Formation,
Overwhelming, Decay, etc) [10,29].

The fifth sub-aim (”predict the swarms emergent behavior...”)
involves simulating the swarms emergent behavior and
predicting future developments [33] using a model of its
underlying computational mechanics (i.e., the spatio-temporal
patterns, their dynamics and intrinsic logic) constructed using
the mappings, categorizations and details gathered during the
fourth aim (e.g., spatio-temporal pattern types, velocities,
collision based computational logic, etc) [10]. The predictive
accuracy obtained when modelling the computational
mechanics of Cellular Automata in this way was as high as
98.5% [51]. The models accuracy can be evaluated by comparing
its predictions against the swarm’s actual developments. The
task here is to try to get as low an error as reasonably possible,
since even small errors in the particle (spatio-temporal pattern)
velocities or interactions are compounded over time [10].

The sixth sub-aim (” investigate methods to manipulate the
underlying computational mechanisms... ”) may be achieved
through manipulating certain properties related to key robots
[27] (i.e., their positions, velocities, virtual forces, etc.) or those
related to the robot swarm as a whole (i.e., configurations, etc.),
or the environment [2], or some external stimuli (i.e., light) or
other, less explicit factors (i.e., noise, wireless communication
delay times, etc., which can directly influence aggregation or
dispersion in robotic swarms [15]). One way in which the
direction of computational mechanisms (spatio-temporal
structures) can be influenced is via the addition of attractants or
repellents in the computing space (i.e., the swarm’s external
environment) to directly manipulate the systems medium, which
would subsequently influence the embedded spatio-temporal
structures [2]. For instance, chemical pheromones can be used as
attractors to spatio-temporal structures [20], impurities can act as
barriers or reflectors to them [28] and the light intensity
illuminating the medium (i.e., protoplasmic networks [29],
swarms of photo-avoidant individuals [20], etc.) can be used as a
repellent to them. A propagating plasmodium wave hits an
obstacle (of light-i.e., a suitably shaped domain of illumination)
that is small enough to divert [the emergent wave-front] [20].

Repellents have even been shown to divert propagating spatio-
temporal structures by phase-shifting those [29] or splitting them
into two independent signals (spatiotemporal structures) [20,29].
The signal-wave (spatiotemporal structure) will split then into
two signals, these daughter waves shrink slightly down to stable
size and then travel with constant shape and the auxiliary wave
will annihilate [29]. By carefully timing and positioning these
external stimuli (i.e., chemicals, light, impurities, etc.), we can
precisely control waves (spatio-temporal structures) trajectory.
E.g., Realize U-turn of a signal (spatio-temporal structure) [29]
and thus direct the evolution of the systems emergent behavior
[28]. The seventh and final sub-aim (”intrinsically control the
swarms emergent behavior by reprogramming its underlying
computational mechanics ”) involves putting all the pieces
together; using the predictive model (developed in the fifth aim)
along with the manipulative methods (investigated in the sixth
aim), to parallel program the swarms collision-based

computations by manipulating it at the level of its spatio-
temporal patterns (i.e., injecting, removing, reflecting, attracting
or repelling spatio-temporal patterns in order to manipulate the
collision-based logical operations).

For example, manipulating the velocity of key spatio-temporal
structures can allow for prior planning of desired collisions and
avoidance of unwanted collisions, thus manipulating when and
how data is changed, and ultimately controlling, or
programming, collision-based computations. Rerouting a spatio-
temporal structure (by changing its direction and/or velocity)
can be used to delay and better coordinate distributed pieces of
information [29]. Trying to control the swarms global behavior
any other way (i.e., at the level of the local robot rules), without
first understanding its underlying computational mechanisms
(i.e., spatio-temporal patterns) and collision-based logic, is
limited and unpredictable. For example, the robot rules react
only to localized spatial or temporal factors [12] (i.e., inter-robot
distances) are known to have a significant impact on the global
outcome of the entire swarm (i.e., how the rule reacts to inter-
robot distances can directly impact the swarms aggregation [25]).

Many of these factors, if fine-tuned, can completely alter the
global behavior of the swarm by being modified ever so slightly
and so such values can be used as leverage points (tipping
points) to directly control swarm behavior (i.e., cause a phase
transitions) [36]. However, such control techniques are few and
rudimentary. Furthermore, the specifics of how the global
behavior will be affected are very general, and thus trial and
error is often required to recognize and fine-tune such
influences. This aim (which is also our ultimate goal) assumes
that spatio-temporal patterns are the fundamental processors of
emergent collision-based computations and ultimately, the
driving force behind global emergent phenomena in robot
swarms.

CONCLUSION

This project has successfully uncovered the computational
mechanisms (embedded spatio-temporal patterns) hypothesized
to govern the intelligent, self-coordinating, group behaviors
emerging across swarms of simple, reactive robots without the
aid of any central controller or leader nor global communication
or global knowledge. It provides proof that the theory of
computational mechanics (developed to explain the emergent
behavior in cellular automata) explains the emergent behavior in
robotic swarms. It also suggests that this theory may potentially
explain emergent behaviors in all forms of complex adaptive
system (i.e., biological neural networks, ant colony behavior, bee
hives, etc.) and may be the key that demystifies emergent
phenomena itself.

Most of our findings confirmed prior research into
spatiotemporal computations conducted in Cellular Automata
and supported their findings (i.e., pieces of information are
encoded in the spatio-temporal pattern and transferred across
the system when the moves over time pattern. Changing a
pattern corresponds to changing the information it represents.
Stable spatio-temporal patterns can be changed via collisions
while semi-stable patterns can change spontaneously without
any external influences). Some findings however, did differ.

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 17

These findings provided us with additional, unique insights (i.e.,
the average decay time of semi-stable patterns is proportional to
the number of robots it consists of, spatio-temporal patterns
need not collide directly and can sometimes influence one
another from a distance, pattern changes form the basis of the
collision-based logic gates and can occur via patterns merging,
splitting, absorbing, annihilating, forming, overwhelming or
decaying. Chaotic non-patterns contribute to the computational
process by influencing nearby patterns, etc.).

Following our discovery, we believe that the key to understand a
robotic swarm ’ s emergent behavior is by understanding its
underlying computational mechanics (spatio-temporal patterns)
and collision-based logic (pattern changes and interactions).
Therefore, the next step would be to conduct a careful study
into the intricate dynamics of the swarms spatio-temporal
patterns; analyzing each individual pattern and its characteristics
in detail, as well as mapping out various interactions and pattern
changes, so as to create an accurate model which is able to
predict future emergent behaviors before they occur in the real
robotic swarm. Further investigation into methods of
manipulating (i.e., injecting, removing, reflecting, attracting,
repelling, etc.) spatio-temporal patterns is also needed, and this
may include researching the effects of noise and initial
configuration on the development of the swarms computational
mechanisms. Thereafter, we could reach our ultimate goal of
controlling a robotic swarm’s emergent behavior intrinsically by
predicting and influencing its underlying computational
mechanics.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests: Mohammed Terry Jack declares that he
has no conflict of interest. Arnab Singh Khuman declares that
he has no conflict of interest. Kayode Owa declares that he has
no conflict of interest.

Ethical approval: This article does not contain any studies with
human participants or animals performed by any of the authors.

Informed consent: N/A

ACKNOWLEDGMENT

First and Foremost, I would like to thank God; Nurturing-Lord
of the (seen and unseen) Worlds.

There’s no mental or physical strength except with Almighty
God; Most High. May your veneration be upon our Grand-
Master Muhammad and, his family and his companions and
peace. Thereafter I’d like to thank my family; Elsa and Terry
Weizemann (my beloved parents), Rouhy Zahra and Fahtima
Zahra (my darling wife and daughter), Jerui and Idris (my dearest
brothers), Dr. Sahar, Imran and Faizan Khan (my loving in laws),
and all aunties, uncles, cousins, nephews and nieces for their
continual love, support and encouragement. To my respected
Professors in Artificial Intelligence and Robotics at De Montfort
University-Archie Singh and Kay Owa-a very special thank you
for your guidance, advice and enthusiasm throughout this
project. Im also very grateful to my close friends, Ayman (Ian)
Vicente and Sheikh Amienoellah Abderoef, for their invaluable

companionship and stimulating discussions during my time in
Abu Dhabi. Last but not least, I ’d like to thank Santa Fe
Institutes Complexity Explorer for their terrific online courses
and ground breaking research into Complexity Science, which
sparked my interest in the fascinating field and eventually lead
to the birth of this project.

References

1. Devi NR, Uma V, Praveena TS, and Jyothi MN. Emerging and
Challenging Applications In Swarm Robotics. Int J Eng Sci
2013;2:318-321.

2. Sharma YK, Bagla A. Security challenges for swarm robotics. Int J
InfoTech Know Manag 2009;2: 45-48.

3. Vassev E, Sterritt R, Rouff C, Hinchey M. Swarm technology at
NASA: building resilient systems. IT Professional 2012;14: 36-42.

4. Mitchell M. Is the Universe a Universal Computer?. Science ’s
Compass. 2002;298:65-68.

5. Hordjik W. An Overview of Computation in Cellular Automata.
Phys Comp 1996;96:1-10.

6. Serugendo GDM. Autonomous systems with emergent behavior.
2006;429-443.

7. Broberg A, Andersson N, Branberg A, Holmlund K, Janlert LE, et
al. Emergent Interaction Systems-designing for emergence. 2001.

8. Winfield AFT. The Emergence Engineers’ Dilemma: it seems we
can evolve emergence, or prove emergent properties, but not both.
2010;1-23.

9. Ohkura K, Yasuda T, Matsumura Y. Analyzing macroscopic
behavior in a swarm robotic system based on clustering. SICE
Annual Conference2011 Proceedings 2011;356-361.

10. Crutchfield JP, Mitchell M (1995) The evolution of emergent
computation. Proceedings of the National Academy of Sciences
1995;92:10742-10746.

11. Stirling T, Roberts J, Zufferey JC, Floreano D (2012) Indoor
navigation with a swarm of flying robots. 2012;4641-4647.

12. Brambilla M, Ferrante E, Birattari, M, Dorigo M. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intel
2013;7:1-41.

13. Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S.
Self-organization in social insects. Trends Ecol Evol 1997;12:
188-193.

14. Kramper W, Wanker R, Zimmermann KH. Analysis of swarm
behavior using compound eye and neural network control. Open
Comput Sci 2012;2: 16-32.

15. Mijalkov M, McDaniel A, Wehr J, Volpe G (2016) Engineering
sensorial delay to control phototaxis and emergent collective
behaviors. Phys. Rev. X 2012;6: 011008.

16. Payton D, Estkowski R, Howard M. Compound behaviors in
pheromone robotics. Robotics and Autonomous Systems
2003;44:229-240.

17. Holland O, Melhuish C. Stigmergy selforganization,and sorting in
collective robotics. Artificial life 1999;5 :173-202.

18. Hordji k W. Particles That SFI Bulletin, 2001;16: 17-20.

19. Reynaga R, Amthauer E. Two-dimensional cellular automata of
radius one for density classification task. Pattern recognition
letters 2003;24:2849-2856.

20. Adamatzky A. Slimeware: engineering devices with slime mold.
Artificial life 2013;19:317-330.

21. Dorigo M, Trianni V, Ahin E, Gro R, Labella TH, et al. Evolving
self-organizing behaviors for a swarm-bot. Autonomous Robots
2004;17:223-245.

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 18

22. Spears WM, Spears DF, Hamann JC, Heil R. Distributed physics-
based control of swarms of vehicles. Autonomous Robots
2004;17:137-162.

23. Trianni V, Nolfi S. Engineering the evolution of self-organizing
behaviors in swarm robotics: A case study. Artificial life
2011;17:183-202.

24. Morales FJ, Crutchfield JP, Mitchell M. Evolving two-dimensional
cellular automata to perform density classification: A report on
work in progress. Cellular Automata: Research Towards Industry
1998;3-14.

25. Kelley DH, Ouellette NT. Emergent dynamics of laboratory insect
swarms. Scientific reports. 2013.

26. Hopfield JJ. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national
academy of sciences 1982;79:2554-2558.

27. Mabrouk MH, McInnes CR. An Emergent Wall following
behavior to Escape Local Minima for Swarms of Agents. IAENG
International Journal of Computer Science.2008.

28. Costello DL, Adamatzky A. Experimental implementation of
collision-based gates in belousov zhabotinsky medium. Chaos,
Solitons and Fractals 2005;25:535-544.

29. Adamatzky A. Collision-based computing in Belousov Zhabotinsky
medium. Chaos, Solitons and Fractals 2004;21:1259-1264.

30. Hawick KA, Scogings CJ. Complex emergent behavior from
evolutionary spatial animat agents. Adaptation, Learning, and
Optimization 2010;139-159.

31. Stone C, Bull L. Evolution of cellular automata with memory: The
density classification task. Biosystems 2009;97:108-116.

32. Arvin F, Murray J, Zhang C. Yue S. Colias: An autonomous micro
robot for swarm robotic applications. International Journal of
Advanced Robotic Systems 2014;11: 113.

33. Givigi SN, Schwartz HM A. A game theoretic approach to swarm
robotics. Applied Bionics and Biomechanics 2006;3:131-142.

34. Various Emergent Behavior.2013.

35. Martin A, Helmerson K.Emergence: the remarkable simplicity of
complexity.2014.

36. Rand W. Introduction to Agent-Based Modeling (Summer 2018).
2016.

37. Johnson G. Mindless Creatures Acting Mindfully.1999.

38. Piccinini, G. Computational Modelling vs Computational
Explanation: Is everything a Turing Machine, and does it matter
to the philosophy of mind?. Australasian Journal of Philosophy
2017;85: 93-115

39. Crutcheld J Evolving Cellular Automata Group (EvCA) Project.

40. Chatty A, Kallel I, Gaussier P, Alimi AM. Emergent complex
behaviors for swarm robotic systems by local rules. 2011 IEEE
Workshop on Robotic Intelligence in Informationally Structured
Space. 2011;69-76.

41. J. Groff. GOOeFloys (Gooey-floweez:Greater Object Oriented
evolving Floys).Available: Last accessed 23rd Aug 2017.

42. Bohm D. Wholeness and the implicate order. Psychology Press
10.2002.

43. Peat FD. Non-locality in Nature and Cognition. Nature, Cognition
and System II 1992;297-311.

44. Wolfram S. A new kind of science. Champaign: Wolfram media
2002;5:1-1250.

45. de Oliveira GMB, Siqueira SRC. Parameter characterization of
two-dimensional cellular automata rule space. Physica D:
Nonlinear Phenomena 2006;217:1-6.

46. Hordjik W. Dynamics, Emergent Computation, and Evolution in
Cellular Automata. Dissertation. 1999;1-241.

47. Ventrella JJ. A particle swarm selects for evolution of gliders in
non-uniform 2d cellular automata. Artificial Life X: proceedings of
the 10th international conference on the simulation and synthesis
of living systems 2006;386-392.

48. Das, R., Mitchell, M. and Crutchfield JP. A genetic algorithm
discovers particle-based computation in cellular automata.
International Conference on Parallel Problem Solving from
Nature 1994;344-353.

49. Mitchell M, Crutchfield JP, Hraber PT. Evolving cellular automata
to perform computations: Mechanisms and impediments. Physica
D: Nonlinear Phenomena 1994;75:361-391.

50. Langton CG. Computation at the edge of chaos: Phase transitions
and emergent computation. Physica D 1990;42:12-37.

51. Hordjik W. World Wide Wanderings.2013.

52. Packard, NH. Adaptation toward the edge of chaos in Kelso JAS,
Mandell AJ, Shlesinger M.F. Dynamic Patterns in Complex
Systems 293301. 1988.

53. Martinez GJ, Seck-Tuoh-Mora JC, Zenil H. Computation and
Universality: Class IV versus Class III Cellular Automata. J Cell
Autom. 2013;7:393-430.

54. Mitchell M, Crutcheld JP, Hordjik W (1996) Embedded particle
computation in evolved cellular automata. Proceedings of the
Conference on Physics and Computation. 1996.

55. Adamatzky A. On oscillators in phyllosilicate excitable automata.
International Journal of Modern Physics C 2013;24:1350034.

56. Rand W. Introduction to Agent-Based Modeling summer 2018.
2016.

57. Forrest S. Genetic algorithms: Principles of natural selection
applied to computation. Science 1993;261:872-878.

58. Crutchfield JP, Hanson JE (1993) Turbulent pattern bases for
cellular automata. Physica D: Nonlinear Phenomena
1993;69:279-301.

59. Hanson, JE, Crutchfield JP. The attractor Basin portrait of a
cellular automaton. J Stat Phys 1992;66:1415-1462.

Jack MDA, et al.

J Swarm Intel Evol Comput, Vol.8 Iss.1 No:175 19

	内容
	Spatio-Temporal Patterns Act as Computational Mechanisms Governing Emergent Behavior in Robotic Swarms
	ABSTRACT
	INTRODUCTION
	Main aims and challenges
	Advantages to controlling a swarm
	Applications of controlled swarms
	Dangers of uncontrolled swarms

	BACKGROUND
	Robotic swarms
	Robotic swarms vs. Collective robots
	Robotic swarms vs. Emergent phenomena
	Emergent phenomena
	Examples of emergent phenomena in nature
	Important conditions to establish emergence
	Understanding emergent behavior using cellular automata
	Collision-based computing
	Embedded spatio-temporal structures

	TEST METHODOLOGIES
	Computer simulations
	NetLogo
	Modelling the robotic swarm across space
	Modelling the robotic swarm across time
	Robotic swarm behavioral design

	ANALYSIS
	Type I: Static patterns (class 1: fixed-point attractors)
	Type II: Stable patterns (class 2: periodic attractors)
	Type III: Non-patterns (class 3: chaotic attractors)
	Type IV: Semi-stable patterns (class 4: strange attractors)
	Stationary patterns

	DYNAMIC PATTERNS
	Merging splitting patterns
	Influencing patterns at a distance
	Decaying patterns
	Assessment

	FUTURE RESEARCH
	CONCLUSION
	COMPLIANCE WITH ETHICAL STANDARDS
	ACKNOWLEDGMENT
	References

