
1Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

Research Article

Correspondence to: Hamed Hosseinzadeh, Manufacturing Technology Project, Cherry Hill, New Jersey, 08003, USA, E-mail: Hamed@uwalumni.
com; Hamed@manufacture.tehcnology

Received: 29-Apr-2024, Manuscript No. SIEC-24-25581; Editor assigned: 01-May-2024, Pre QC No. SIEC-24-25581 (PQ); Reviewed: 16-May-2024,
QC No. SIEC-24-25581; Revised: 23-May-2024, Manuscript No. SIEC-24-25581 (R); Published: 31-May-2024, DOI: 10.35248/2090-4908.24.13.368.

Citation: Hosseinzadeh H (2024) Performance Analysis of Backpropagation Artificial Neural Networks with Various Activation Functions and
Network Sizes. Int J Swarm Evol Comput. 13:368.

Copyright: © 2024 Hosseinzadeh H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

OPEN ACCESS Freely available online

Performance Analysis of Backpropagation Artificial Neural Networks with
Various Activation Functions and Network Sizes
Hamed Hosseinzadeh*

Manufacturing Technology Project, Cherry Hill, New Jersey, 08003, USA

ABSTRACT

This paper conducts a comprehensive performance analysis of Back Propagation Artificial Neural Networks (BP-
ANNs) utilizing various activation functions. Activation functions play a crucial role in shaping neural networks’
behavior and learning capabilities. Through systematic evaluation across diverse network sizes (numbers of hidden
layers and neurons), this study assesses the impact of commonly employed activation functions-such as Sigmoidal,
Tanh, Clog log, Aranda, and others-on the convergence speed and accuracy of BP-ANNs. The findings provide
empirical insights essential for optimizing neural network artificial intelligence architectures tailored to specific
applications and datasets.

Keywords: Artificial intelligence; Neural networks; Backpropagation artificial neural networks; Activation function

INTRODUCTION

Artificial Neural Networks (ANNs) have emerged as powerful
tools for modeling complex relationships and solving intricate
problems across various domains. The success and effectiveness of
these networks are intricately tied to their ability to learn complex
patterns from data. Fundamental to their learning process is the
backpropagation algorithm, a cornerstone in training ANNs that
adjusts the network’s weights to minimize errors between predicted
and actual outputs. ANNs have emerged as powerful tools for
complex pattern recognition and modeling across various domains
[1]. Besides network size (number of layers and neurons), activation
functions are central to the architecture of ANNs. The effectiveness
of ANNs heavily relies on their architecture and the choice of
activation functions [2,3]. Activation functions introduce non-
linearities critical for enabling ANNs to learn intricate relationships
within data, thereby significantly influencing their learning capacity
[4,5]. Activation functions are pivotal in determining the output of
a node or neuron, thereby influencing the network’s capacity for
approximation, convergence, and generalization [6,7].

Extensive research has explored the impact of activation functions
on neural network performance [8,9]. The study concludes that
tanhLU activation functions serve as a superior alternative
to traditional tanh functions in neural networks, enhancing
performance and accelerating convergence rates across various
network types and sizes [10]. Recent advancements have introduced
novel activation functions like Swish and Mish aiming to enhance

training speed and generalization abilities [11,12]. Different
activation functions exhibit unique characteristics; for instance,
ReLU and its variants offer faster convergence due to their non-
saturating nature while sigmoid and tanh functions face challenges
with vanishing gradients [13,14]. However, comprehensive analyses
encompassing a broad array of activation functions across diverse
datasets remain essential [15-18] and analyses across various
architectures and datasets involving these functions remain limited
[19].

Although the activation function is a key parameter in a neural
network, and the differences between various activation functions
are marginal once the network is effectively trained, other
factors such as the training algorithm, network size, and learning
parameters play a more significant role in the network’s proper
training, as evidenced by the minimal differences in training
outcomes with different activation functions [20].

This paper bridges the gap of performance analysis by systematically
evaluating BP-ANNs with a comprehensive set of activation
functions across diverse network sizes. This paper enhance
evidence and insights that can guide practitioners and researchers
in selecting the most suitable activation functions and network
size tailored to their problem domains, ultimately enhancing the
performance and efficacy of ANNs [21-25].

MATERIALS AND METHODS

2

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

layers (e.g., Sigmoid, Tanh).

Forward pass

For each layer from the input layer to the output layer:

Input calculation: Compute the input to a neuron as the weighted

sum of its inputs plus a bias, 1
.n

i ii
z w x b

=
= +∑

Activation: Apply the activation function to the input to get the
neuron’s output, (z)y f=

Backward pass

For each layer from the output layer back to the input layer:

Output error calculation (for the output layer): Calculate the
error in the output layer.

Error propagation (for hidden layers): For each layer, calculate
each neuron’s delta (error term) based on the deltas of the neurons
in the layer above and the derivative of the activation function.

Weight update

For each weight in the network:

Calculate gradient: Compute the gradient of the loss function
with respect to each weight. This involves the delta of the neuron it
feeds into and the output of the neuron it comes from.

Update weights: Adjust the weights based on the gradients, using
a learning rate parameter to control the size of the weight updates.

The overall summary and steps of the above algorithm are:

Forward pass: Compute the output of the network using the
current weights and the chosen activation functions.

Calculate total error: Compute the error at the output layer.
Depending on the problem, this could mean squared error, cross-
entropy loss, etc.

Backward pass: Propagate the error backward through the network,
updating weights according to the gradients.

Repeat: Repeat the forward pass, error calculation, and backward
pass for many epochs or until the network performance meets a
specified criterion.

RESULTS AND DISCUSSIONS

In the investigation of the performance of a neural network model
employing the different activation functions (Table 1), the effect of
varying the number of hidden layers and the number of neurons
in each hidden layer on the model’s accuracy was systematically
examined over 1000 iterations. The result in Figure 2 indicates a
non-linear (with an oscillation) relationship between the number
of hidden layers and the accuracy of the model.

Simulation method

A code for BP-ANNs is written from scratch in Microsoft Visual
Basic 2020. It involves two main phases: the forward pass, where
the input data is passed through the network to generate an output,
and the backward pass, where the error between the predicted
output and the actual output is propagated back through the
network to update the weights. This process is repeated for many
iterations or epochs (Figure 1).

The general equation for a neuron in an artificial neural network
with an activation function can be expressed as:

()1
.(1)n

i ii
y f w x b

=
= +∑

Where y is the neuron’s output, f is the activation function, iw

represents the weight of the ith input, ix represents the ith input to
the neuron, b is the bias term, and n is the number of inputs to
the neuron.

This is the high-level algorithm for BP-ANNs in this research:

Initialization

Initialize weights: Randomly initialize the weights for all layers in
the network.

Choose activation functions: Select an activation function for

Figure 1: Schematic diagram of a multilayer perceptron during the
back propagation phase, illustrating the flow of error correction from
the output layer through the hidden layers to the input layer to adjust
the neural network weights.

Table 1: Activation functions and their definitions.

No. Name Function Range

1 Aranda
0.51 (1)xe −− + [0,1]

2 Bi_sig_1 1 0.5 1 0.5

1 10.5()
(1) (1)x xe e− + − − − −+
+ + [0,1]

3 Bi_sig_2 0.5 1 0.5

1 10.5()
(1) (1)x xe e− − − − −+
+ + [0,1]

3

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

Figure 2: Variation of model accuracy with an increasing number of hidden layers in a neural network using the Aranda activation function after
1000 training iterations. The graph exhibits a complex, non-monotonic relationship, with initial high accuracy at a low number of hidden layers,
a marked decrease and subsequent minimum at an intermediate number of layers, followed by a steady increase to a plateau like as the number of
hidden layers reaches 14000.

4 Bi_tanh_1
10.5 tanh tanh

2 2
x x + +

[-1,1]

5 Bi_tanh_2
1 10.5 tanh tanh

2 2
x x − + +

[-1,1]

6 Cloglog 1
xee−− [0,1]

7 Cloglogm 0.71 2
xee−− [-1,1]

8 Elliott
0.5

1 | |
x
x+ [-0.5,0.5]

9 Loglog
xee− [0,1]

10 Logsigm
21()

1 xe−+
[0,1]

11 Log-sigmoid
1

1 xe−+
[0,1]

12 Modified Elliott 21
x

x+
[-1,1]

13 Rootsig 21 1
x

x+ +
[-1,1]

14 Sigmoidalm
41()

1 xe−+
[0,1]

15 Sigmoidalm2
4

0.5

1()
1 xe−+

[0,1]

16 Sigt
1 1 1(1)

1 1 1x x xe e e− − −+ −
+ + +

[0,1]

17 Skewed-sig 2

1 1()()
1 1x xe e− −+ +

[0,1]

18 Softsign 1 | |
x

x+
[-1,1]

19 Wave
22(1) xx e−− [- 0.055,1]

4

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

The model begins with a high level of accuracy, even with a
minimal number of hidden layers, suggesting that the Aranda
activation function is highly effective when the complexity of the
model is low. As the number of hidden layers increases to 2000,
a slight decrease in accuracy is observed, potentially indicating an
overfitting scenario where the model is too tailored to the training
data, negatively impacting its generalization capabilities.

A significant observation is made as the number of hidden layers’
approaches 4000; the accuracy sharply drops to its lowest point.
This trough may indicate a critical threshold beyond which the
addition of layers detrimentally affects the model’s ability to learn
and generalize. However, past this point, there is a remarkable
recovery in accuracy, which steadily increases with the number of
hidden layers. At around 8000 hidden layers, the model’s accuracy
is closer to its initial value and continues to rise as the number of
hidden layers’ approaches 14000.

The 3D plot of Figure 3 visualizes the relationship between the
number of neurons, the choice of activation function, and the
resulting accuracy of a neural network after 300 iterations of
training. Each activation function is represented by a number on
the x-axis, and the number of neurons in the network is on the
y-axis. The z-axis indicates the accuracy achieved.

Figure 3: 3D representation of neural network accuracy as a function
of the number of neurons and activation function type, post 300
training iterations.

From the surface plot (Figure 3), it is evident that there is a complex
interaction between the type of activation function used and the
number of neurons in determining the accuracy of the neural
network. As the number of neurons increases, there is a general
trend of increasing accuracy, although the rate of increase varies
across different activation functions. Certain activation functions
appear to reach near-optimal accuracy with fewer neurons,
while others may require a larger number of neurons to achieve
comparable performance.

Notably, some activation functions show a sharp increase in accuracy
as the number of neurons grows from a lower to a moderate number,
after which the increase in accuracy plateaus. This plateauing effect
suggests that for these activation functions, there is a saturation
point beyond which adding more neurons does not substantially
improve accuracy. This can be critical for computational efficiency
and avoiding overfitting. It is noteworthy that the accuracy plateaus
for most activation functions after a certain number of neurons,
which can be interpreted as the point of diminishing returns. This
plateau may suggest that beyond a certain network complexity, the

additional computational cost of more neurons does not yield a
commensurate increase in predictive performance.

The activation functions such as “Modified_Elliott” and “Elliott”
display a steep increase in accuracy as the number of neurons grows,
particularly in the range from 1 to 10 neurons. This could indicate
that these functions are more sensitive to the network’s complexity,
benefiting more from a higher number of neurons. In contrast,
functions like “Cloglog” and “Cloglogm” maintain a high level of
accuracy across all neuron counts, suggesting a robust performance
that is less dependent on the number of neurons. This might be
indicative of these functions’ ability to capture complex patterns
even with a relatively simpler network structure.

Moreover, the varying performance across different activation functions
underscores the importance of selecting an appropriate activation
function based on the specific requirements of the task and the data.
For example, functions with higher accuracy in smaller networks might
be preferred in scenarios with computational constraints.

The color-coded accuracy ranges also offer insight into the reliability
of predictions. Activation functions that consistently fall within
the range of 0.999-1.000 accuracy would be desirable for tasks
requiring high precision. Conversely, functions frequently in the
range of 0.000-0.995 accuracy might require further investigation
or modifications to improve their efficacy.

The investigation into the accuracy of neural network predictions,
with respect to the number of neurons and activation functions,
has revealed a multi-faceted relationship. The data presented
in the bar charts (Figure 4) categorizes the activation functions’
performance after 300 iterations into three accuracy ranges: 0.000-
0.990, 0.990-0.999, and 0.999-1.000, across four neuron quantity
scenarios: 2,10,20 and 30 neurons. For configurations with 2
neurons (Figure 4a), most activation functions cluster within the
0.990-0.999 accuracy range, with only ‘Rootsig’ falling below this
threshold. Remarkably, ‘Codegem’ stands out with a near-perfect
accuracy in the 0.999-1.000 bracket. As the neuron count increases
to 10 (Figure 4b), the majority of activation functions maintain their
positions within the 0.990-0.999 range, yet ‘Codegem’ retains its
superior accuracy, and ‘Wave’ joins it in the highest accuracy bracket.

When the neuron counts rise to 20 (Figure 4c), there is a notable
shift with the majority of activation functions, including ‘Aranda’,
‘Wave’, and ‘Codegem’, reaching accuracies in the 0.999-1.000
range. This trend is further pronounced with 30 neurons (Figure
4d), where almost all activation functions achieve top-tier accuracy,
suggesting a saturation effect where additional neurons do not
significantly differentiate the performance of most activation
functions.

These observations suggest that while certain activation functions
may inherently perform better with a small number of neurons,
the benefit of more complex neuron configurations becomes more
universal across different functions. However, it is critical to note
the exception of ‘Rootsig’, which consistently underperforms across
all neuron counts.

The results of Figure 5 show a significant trend where the increase
in the number of neurons tends to improve the accuracy rate, up to
a certain point, for most activation functions. In particular, the blue
to green gradient transition in the graph denotes this trend clearly.
As we move from fewer neurons (towards the front of the graph)
to more neurons (towards the back), there is a general increase in
accuracy, reflected in the change of color from blue to green.

5

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

Figure 4: Comparative analysis of neural network predictive accuracy by activation function and neuron count. The bar charts depict the accuracy
of predictions after 300 iterations across four neuron configurations: 2 neurons (a), 10 neurons (b), 20 neurons (c), and 30 neurons (d). Each
bar represents an activation function, with the color indicating the accuracy range: Solid blue for 0.999-1.000, striped blue for 0.990-0.999, and
solid light blue for 0.000-0.990. The charts illustrate how predictive accuracy varies with the complexity of the network and the type of activation
function used. Note: () 0.000-0.990; () 0.990-0.999; () 0.999-1.000.

Figure 5: Three-dimensional surface plot depicting the impact of neuron numbers on the accuracy rate of artificial neural networks, highlighting the
performance of various activation functions after 300 training iterations.

6

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

Data Availability Statement

The datasets generated and analyzed during the current study are
available from the corresponding author, Hamed Hosseinzadeh,
on reasonable request. The data supporting the findings of this
study are contained within the manuscript. Any further inquiries
regarding the data can be directed to Hamed Hosseinzadeh at
Hamed@uwalumni.com

REFERENCES
1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.

2015;521(7553):436-444.

2. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10). 2010:807-814.

3. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks.
InProceedings of the fourteenth international conference on artificial
intelligence and statistics. 2011:315-323.

4. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. InProceedings
of the IEEE international conference on computer vision 2015:1026-
1034.

5. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural
network acoustic models. InProc. ICML. 2013;30(1):3.

6. Sibi P, Jones SA, Siddarth P. Analysis of different activation functions
using back propagation neural networks J Theor Appl Inf Technol.
2013;47(3):1264-1268.

7. Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation
functions to improve deep neural networks. arXiv preprint. 2014.

8. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: A simple way to prevent neural networks from overfitting. J
Mach Learn Res. 2014;15(1):1929-1958.

9. Ertuğrul ÖF. A novel type of activation function in artificial neural
networks: Trained activation function. Neural Netw. 2018;99:148-157.

10. Shen SL, Zhang N, Zhou A, Yin ZY. Enhancement of neural networks
with an alternative activation function tanhLU. Expert Syst Appl.
2022;199:117181.

11. Ramachandran P, Zoph B, Le QV. Searching for activation functions.
arXiv preprint. 2017.

12. Misra D. Mish: A self-regularized non-monotonic activation function.
arXiv preprint. 2019.

13. Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. InProceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 2010:249-256.

14. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. InInternational
conference on machine learning. PMLR. 2015:448-456).

15. Clevert DA, Unterthiner T, Hochreiter S. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint.
2015.

16. Singh B, Patel S, Vijayvargiya A, Kumar R. Analyzing the impact of
activation functions on the performance of the data-driven gait model.
Results Eng. 2023;18:101029.

17. Farzad A, Mashayekhi H, Hassanpour H. A comparative performance
analysis of different activation functions in LSTM networks for
classification. Neural Comput Appl. 2019;31:2507-2521.

18. Feng J, Lu S. Performance analysis of various activation functions in
artificial neural networks. J Phys Conf Ser. 2019;1237(2):022030.

However, there is a plateau effect observed for all activation
functions, where after a certain number of neurons, the
improvement in accuracy becomes marginal. This could suggest that
the network has reached an optimal complexity for the problem at
hand, and further increases in neuron numbers do not contribute
to better predictions, which is an important consideration to avoid
overfitting and unnecessary computational cost.

CONCLUSION

This paper presents a comprehensive evaluation of the impact of
activation functions on the performance of backpropagation ANNs.
The experiment conducted to assess the impact of the number of
hidden layers in a neural network with the activation function (i.e.,
Aranda) on the model’s accuracy yielded insightful findings. The
activation function exhibits a high degree of initial effectiveness,
with diminishing and increasing (oscillating) returns upon the
incremental addition of hidden layers. These results are crucial
for the design of neural network architectures, as they highlight
the potential for both underfitting and overfitting, depending on
the number of hidden layers used. Further research is warranted
to explore the underlying mechanisms at higher hidden layers that
result in improved model accuracy.

This analysis suggests a significant relationship between the
complexity of the neural network, as dictated by neuron count,
and the efficacy of the activation function. While certain activation
functions may be better suited for networks with fewer neurons,
others scale more effectively with increased complexity. The
findings provide a valuable framework for the selection of activation
functions in neural network design, emphasizing the need to tailor
the activation function to both the specific task and the architecture
of the model. It is evident that activation functions such as ‘Wave’,
‘Modified_Elliott’, and ‘Aranda’ tend to perform optimally when the
number of neurons is increased, consistently achieving accuracies in
the highest values as the neuron count approaches 30. In contrast,
functions like ‘Rootsig’ and ‘Softsign’ present a lower performance
even with a greater number of neurons, with accuracies falling into the
lower values in comparison with other activation functions.

With an increase in the number of neurons from 2 to 30, a clear
pattern emerges, indicating the impact of neuron quantity on the
accuracy of the model after 300 iterations. For configurations
with fewer neurons (2 and 10), certain activation functions such
as ‘Wave’ and ‘Codegem’ demonstrate a marked increase in
accuracy, which is significantly higher than that of other functions.
However, as the neuron count increases to 20 and 30, the disparity
in accuracy between different activation functions diminishes,
leading to a more uniform performance where most activation
functions achieve high accuracy. Notably, the ‘Codegem’ function
consistently exhibits high accuracy across all neuron configurations,
suggesting its robustness and potential suitability for networks
with varying complexities. In addition, the number of neurons
in a neural network layer is a critical factor for achieving a higher
accuracy rate (more neurons, higher accuracy rate). This finding
is pivotal for designing efficient neural network architectures, as
it emphasizes the importance of balancing network complexity
with computational efficiency. Future neural network designs can
leverage these insights to optimize their architectures for improved
performance in diverse AI applications.

DECLARATIONS
Conflict of interest
The authors declare that they have no conflict of interest.

https://www.nature.com/articles/nature14539
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
https://proceedings.mlr.press/v15/glorot11a
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://www.jatit.org/volumes/Vol47No3/61Vol47No3.pdf
https://www.jatit.org/volumes/Vol47No3/61Vol47No3.pdf
https://arxiv.org/abs/1412.6830
https://arxiv.org/abs/1412.6830
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
https://www.sciencedirect.com/science/article/abs/pii/S0893608018300078
https://www.sciencedirect.com/science/article/abs/pii/S0893608018300078
https://www.sciencedirect.com/science/article/abs/pii/S0957417422005681
https://www.sciencedirect.com/science/article/abs/pii/S0957417422005681
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1908.08681
https://proceedings.mlr.press/v9/glorot10a
https://proceedings.mlr.press/v9/glorot10a
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://www.sciencedirect.com/science/article/pii/S2590123023001561
https://www.sciencedirect.com/science/article/pii/S2590123023001561
https://link.springer.com/article/10.1007/s00521-017-3210-6
https://link.springer.com/article/10.1007/s00521-017-3210-6
https://link.springer.com/article/10.1007/s00521-017-3210-6
https://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022030/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022030/meta

7

Hosseinzadeh H

Int J Swarm Evol Comput, Vol.13 Iss.3 No:1000368

22. Sodhi SS, Chandra P. Bi-modal derivative activation function for
sigmoidal feedforward networks. Neurocomputing. 2014;143:182-196.

23. Gomes GS, Ludermir TB, Lima LM. Comparison of new activation
functions in neural network for forecasting financial time series.
Neural Comput Appl. 2011;20:417-439.

24. Singh Y, Chandra P. A class+ 1 sigmoidal activation functions for
FFANNs. J Econ Dyn Control. 2003;28(1):183-187.

25. Chandra P, Singh Y. A case for the self-adaptation of activation
functions in FFANNs. Neurocomputing. 2004;56:447-454.

19. Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural
Netw. 2018;107:3-11.

20. Eckle K, Schmidt-Hieber J. A comparison of deep networks with ReLU
activation function and linear spline-type methods. Neural Netw.
2019;110:232-242.

21. Gomes GS, Ludermir TB. Optimization of the weights and asymmetric
activation function family of neural network for time series forecasting.
Expert Syst Appl. 2013;40(16):6438-6446.

https://www.sciencedirect.com/science/article/abs/pii/S0925231214007498
https://www.sciencedirect.com/science/article/abs/pii/S0925231214007498
https://link.springer.com/article/10.1007/s00521-010-0407-3
https://link.springer.com/article/10.1007/s00521-010-0407-3
https://www.sciencedirect.com/science/article/abs/pii/S0165188902001574
https://www.sciencedirect.com/science/article/abs/pii/S0165188902001574
https://www.sciencedirect.com/science/article/abs/pii/S0925231203004508
https://www.sciencedirect.com/science/article/abs/pii/S0925231203004508
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608018303277
https://www.sciencedirect.com/science/article/pii/S0893608018303277
https://www.sciencedirect.com/science/article/abs/pii/S0957417413003515
https://www.sciencedirect.com/science/article/abs/pii/S0957417413003515

