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ABSTRACT

This paper conducts a comprehensive performance analysis of Back Propagation Artificial Neural Networks (BP-
ANNs) utilizing various activation functions. Activation functions play a crucial role in shaping neural networks’ 
behavior and learning capabilities. Through systematic evaluation across diverse network sizes (numbers of hidden 
layers and neurons), this study assesses the impact of commonly employed activation functions-such as Sigmoidal, 
Tanh, Clog log, Aranda, and others-on the convergence speed and accuracy of BP-ANNs. The findings provide 
empirical insights essential for optimizing neural network artificial intelligence architectures tailored to specific 
applications and datasets.
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INTRODUCTION

Artificial Neural Networks (ANNs) have emerged as powerful 
tools for modeling complex relationships and solving intricate 
problems across various domains. The success and effectiveness of 
these networks are intricately tied to their ability to learn complex 
patterns from data. Fundamental to their learning process is the 
backpropagation algorithm, a cornerstone in training ANNs that 
adjusts the network’s weights to minimize errors between predicted 
and actual outputs. ANNs have emerged as powerful tools for 
complex pattern recognition and modeling across various domains 
[1]. Besides network size (number of layers and neurons), activation 
functions are central to the architecture of ANNs. The effectiveness 
of ANNs heavily relies on their architecture and the choice of 
activation functions [2,3]. Activation functions introduce non-
linearities critical for enabling ANNs to learn intricate relationships 
within data, thereby significantly influencing their learning capacity 
[4,5]. Activation functions are pivotal in determining the output of 
a node or neuron, thereby influencing the network’s capacity for 
approximation, convergence, and generalization [6,7].

Extensive research has explored the impact of activation functions 
on neural network performance [8,9]. The study concludes that 
tanhLU activation functions serve as a superior alternative 
to traditional tanh functions in neural networks, enhancing 
performance and accelerating convergence rates across various 
network types and sizes [10]. Recent advancements have introduced 
novel activation functions like Swish and Mish aiming to enhance 

training speed and generalization abilities [11,12]. Different 
activation functions exhibit unique characteristics; for instance, 
ReLU and its variants offer faster convergence due to their non-
saturating nature while sigmoid and tanh functions face challenges 
with vanishing gradients [13,14]. However, comprehensive analyses 
encompassing a broad array of activation functions across diverse 
datasets remain essential [15-18] and analyses across various 
architectures and datasets involving these functions remain limited 
[19].

Although the activation function is a key parameter in a neural 
network, and the differences between various activation functions 
are marginal once the network is effectively trained, other 
factors such as the training algorithm, network size, and learning 
parameters play a more significant role in the network’s proper 
training, as evidenced by the minimal differences in training 
outcomes with different activation functions [20].

This paper bridges the gap of performance analysis by systematically 
evaluating BP-ANNs with a comprehensive set of activation 
functions  across diverse  network  sizes.  This paper enhance
evidence and insights that can guide practitioners and researchers 
in selecting the most suitable activation functions and network 
size tailored to their problem domains, ultimately enhancing the 
performance and efficacy of ANNs [21-25].

MATERIALS AND METHODS
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layers (e.g., Sigmoid, Tanh).

Forward pass

For each layer from the input layer to the output layer:

Input calculation: Compute the input to a neuron as the weighted 

sum of its inputs plus a bias, 1
.n

i ii
z w x b

=
= +∑  

Activation: Apply the activation function to the input to get the 
neuron’s output, (z)y f=

Backward pass

For each layer from the output layer back to the input layer:

Output error calculation (for the output layer): Calculate the 
error in the output layer. 

Error propagation (for hidden layers): For each layer, calculate 
each neuron’s delta (error term) based on the deltas of the neurons 
in the layer above and the derivative of the activation function.

Weight update

For each weight in the network:

Calculate gradient: Compute the gradient of the loss function 
with respect to each weight. This involves the delta of the neuron it 
feeds into and the output of the neuron it comes from.

Update weights: Adjust the weights based on the gradients, using 
a learning rate parameter to control the size of the weight updates.

The overall summary and steps of the above algorithm are:

Forward pass: Compute the output of the network using the 
current weights and the chosen activation functions.

Calculate total error: Compute the error at the output layer. 
Depending on the problem, this could mean squared error, cross-
entropy loss, etc.

Backward pass: Propagate the error backward through the network, 
updating weights according to the gradients.

Repeat: Repeat the forward pass, error calculation, and backward 
pass for many epochs or until the network performance meets a 
specified criterion.

RESULTS AND DISCUSSIONS

In the investigation of the performance of a neural network model 
employing the different activation functions (Table 1), the effect of 
varying the number of hidden layers and the number of neurons 
in each hidden layer on the model’s accuracy was systematically 
examined over 1000 iterations. The result in Figure 2 indicates a 
non-linear (with an oscillation) relationship between the number 
of hidden layers and the accuracy of the model.

Simulation method

A code for BP-ANNs is written from scratch in Microsoft Visual 
Basic 2020. It involves two main phases: the forward pass, where 
the input data is passed through the network to generate an output, 
and the backward pass, where the error between the predicted 
output and the actual output is propagated back through the 
network to update the weights. This process is repeated for many 
iterations or epochs (Figure 1).

The general equation for a neuron in an artificial neural network 
with an activation function can be expressed as:

( )1
. .....................(1)n

i ii
y f w x b

=
= +∑  

Where y is the neuron’s output, f is the activation function,  iw  

represents the weight of the ith input, ix  represents the ith input to 
the neuron, b is the bias term, and n is the number of inputs to 
the neuron.

This is the high-level algorithm for BP-ANNs in this research:

Initialization

Initialize weights: Randomly initialize the weights for all layers in 
the network.

Choose activation functions: Select an activation function for 

Figure 1: Schematic diagram of a multilayer perceptron during the 
back propagation phase, illustrating the flow of error correction from 
the output layer through the hidden layers to the input layer to adjust 
the neural network weights.

Table 1: Activation functions and their definitions.

No. Name Function Range

1 Aranda
0.51 (1 )xe −− + [0,1]

2 Bi_sig_1 1 0.5 1 0.5

1 10.5( )
(1 ) (1 )x xe e− + − − − −+
+ + [0,1]

3 Bi_sig_2 0.5 1 0.5

1 10.5( )
(1 ) (1 )x xe e− − − − −+
+ + [0,1]
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Figure 2: Variation of model accuracy with an increasing number of hidden layers in a neural network using the Aranda activation function after 
1000 training iterations. The graph exhibits a complex, non-monotonic relationship, with initial high accuracy at a low number of hidden layers, 
a marked decrease and subsequent minimum at an intermediate number of layers, followed by a steady increase to a plateau like as the number of 
hidden layers reaches 14000.

4 Bi_tanh_1
10.5 tanh tanh

2 2
x x +    +        

[-1,1]

5 Bi_tanh_2 
1 10.5 tanh tanh

2 2
x x − +    +        

[-1,1]

6 Cloglog 1
xee−− [0,1]

7 Cloglogm 0.71 2
xee−− [-1,1]

8 Elliott
0.5

1 | |
x
x+ [-0.5,0.5]

9 Loglog
xee− [0,1]

10 Logsigm 
21( )

1 xe−+
[0,1]

11 Log-sigmoid
1

1 xe−+
[0,1]

12 Modified Elliott 21
x

x+
[-1,1]

13 Rootsig 21 1
x

x+ +
[-1,1]

14 Sigmoidalm
41( )

1 xe−+
[0,1]

15 Sigmoidalm2
4

0.5

1( )
1 xe−+

[0,1]

16 Sigt 
1 1 1(1 )

1 1 1x x xe e e− − −+ −
+ + +

[0,1]

17 Skewed-sig 2

1 1( )( )
1 1x xe e− −+ +

[0,1]

18 Softsign 1 | |
x

x+
[-1,1]

19 Wave
22(1 ) xx e−− [- 0.055,1]
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The model begins with a high level of accuracy, even with a 
minimal number of hidden layers, suggesting that the Aranda 
activation function is highly effective when the complexity of the 
model is low. As the number of hidden layers increases to 2000, 
a slight decrease in accuracy is observed, potentially indicating an 
overfitting scenario where the model is too tailored to the training 
data, negatively impacting its generalization capabilities.

A significant observation is made as the number of hidden layers’ 
approaches 4000; the accuracy sharply drops to its lowest point. 
This trough may indicate a critical threshold beyond which the 
addition of layers detrimentally affects the model’s ability to learn 
and generalize. However, past this point, there is a remarkable 
recovery in accuracy, which steadily increases with the number of 
hidden layers. At around 8000 hidden layers, the model’s accuracy 
is closer to its initial value and continues to rise as the number of 
hidden layers’ approaches 14000.

The 3D plot of Figure 3 visualizes the relationship between the 
number of neurons, the choice of activation function, and the 
resulting accuracy of a neural network after 300 iterations of 
training. Each activation function is represented by a number on 
the x-axis, and the number of neurons in the network is on the 
y-axis. The z-axis indicates the accuracy achieved.

Figure 3: 3D representation of neural network accuracy as a function 
of the number of neurons and activation function type, post 300 
training iterations.

From the surface plot (Figure 3), it is evident that there is a complex 
interaction between the type of activation function used and the 
number of neurons in determining the accuracy of the neural 
network. As the number of neurons increases, there is a general 
trend of increasing accuracy, although the rate of increase varies 
across different activation functions. Certain activation functions 
appear to reach near-optimal accuracy with fewer neurons, 
while others may require a larger number of neurons to achieve 
comparable performance.

Notably, some activation functions show a sharp increase in accuracy 
as the number of neurons grows from a lower to a moderate number, 
after which the increase in accuracy plateaus. This plateauing effect 
suggests that for these activation functions, there is a saturation 
point beyond which adding more neurons does not substantially 
improve accuracy. This can be critical for computational efficiency 
and avoiding overfitting. It is noteworthy that the accuracy plateaus 
for most activation functions after a certain number of neurons, 
which can be interpreted as the point of diminishing returns. This 
plateau may suggest that beyond a certain network complexity, the 

additional computational cost of more neurons does not yield a 
commensurate increase in predictive performance.

The activation functions such as “Modified_Elliott” and “Elliott” 
display a steep increase in accuracy as the number of neurons grows, 
particularly in the range from 1 to 10 neurons. This could indicate 
that these functions are more sensitive to the network’s complexity, 
benefiting more from a higher number of neurons. In contrast, 
functions like “Cloglog” and “Cloglogm” maintain a high level of 
accuracy across all neuron counts, suggesting a robust performance 
that is less dependent on the number of neurons. This might be 
indicative of these functions’ ability to capture complex patterns 
even with a relatively simpler network structure.

Moreover, the varying performance across different activation functions 
underscores the importance of selecting an appropriate activation 
function based on the specific requirements of the task and the data. 
For example, functions with higher accuracy in smaller networks might 
be preferred in scenarios with computational constraints.

The color-coded accuracy ranges also offer insight into the reliability 
of predictions. Activation functions that consistently fall within 
the range of 0.999-1.000 accuracy would be desirable for tasks 
requiring high precision. Conversely, functions frequently in the 
range of 0.000-0.995 accuracy might require further investigation 
or modifications to improve their efficacy.

The investigation into the accuracy of neural network predictions, 
with respect to the number of neurons and activation functions, 
has revealed a multi-faceted relationship. The data presented 
in the bar charts (Figure 4) categorizes the activation functions’ 
performance after 300 iterations into three accuracy ranges: 0.000-
0.990, 0.990-0.999, and 0.999-1.000, across four neuron quantity 
scenarios: 2,10,20 and 30 neurons. For configurations with 2 
neurons (Figure 4a), most activation functions cluster within the 
0.990-0.999 accuracy range, with only ‘Rootsig’ falling below this 
threshold. Remarkably, ‘Codegem’ stands out with a near-perfect 
accuracy in the 0.999-1.000 bracket. As the neuron count increases 
to 10 (Figure 4b), the majority of activation functions maintain their 
positions within the 0.990-0.999 range, yet ‘Codegem’ retains its 
superior accuracy, and ‘Wave’ joins it in the highest accuracy bracket.

When the neuron counts rise to 20 (Figure 4c), there is a notable 
shift with the majority of activation functions, including ‘Aranda’, 
‘Wave’, and ‘Codegem’, reaching accuracies in the 0.999-1.000 
range. This trend is further pronounced with 30 neurons (Figure 
4d), where almost all activation functions achieve top-tier accuracy, 
suggesting a saturation effect where additional neurons do not 
significantly differentiate the performance of most activation 
functions.

These observations suggest that while certain activation functions 
may inherently perform better with a small number of neurons, 
the benefit of more complex neuron configurations becomes more 
universal across different functions. However, it is critical to note 
the exception of ‘Rootsig’, which consistently underperforms across 
all neuron counts.

The results of Figure 5 show a significant trend where the increase 
in the number of neurons tends to improve the accuracy rate, up to 
a certain point, for most activation functions. In particular, the blue 
to green gradient transition in the graph denotes this trend clearly. 
As we move from fewer neurons (towards the front of the graph) 
to more neurons (towards the back), there is a general increase in 
accuracy, reflected in the change of color from blue to green.
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Figure 4: Comparative analysis of neural network predictive accuracy by activation function and neuron count. The bar charts depict the accuracy 
of predictions after 300 iterations across four neuron configurations: 2 neurons (a), 10 neurons (b), 20 neurons (c), and 30 neurons (d). Each 
bar represents an activation function, with the color indicating the accuracy range: Solid blue for 0.999-1.000, striped blue for 0.990-0.999, and 
solid light blue for 0.000-0.990. The charts illustrate how predictive accuracy varies with the complexity of the network and the type of activation 
function used. Note: ( ) 0.000-0.990; ( ) 0.990-0.999; ( ) 0.999-1.000.

Figure 5: Three-dimensional surface plot depicting the impact of neuron numbers on the accuracy rate of artificial neural networks, highlighting the 
performance of various activation functions after 300 training iterations.
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Data Availability Statement

The datasets generated and analyzed during the current study are 
available from the corresponding author, Hamed Hosseinzadeh, 
on reasonable request. The data supporting the findings of this 
study are contained within the manuscript. Any further inquiries 
regarding the data can be directed to Hamed Hosseinzadeh at 
Hamed@uwalumni.com
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However, there is a plateau effect observed for all activation 
functions, where after a certain number of neurons, the 
improvement in accuracy becomes marginal. This could suggest that 
the network has reached an optimal complexity for the problem at 
hand, and further increases in neuron numbers do not contribute 
to better predictions, which is an important consideration to avoid 
overfitting and unnecessary computational cost.

CONCLUSION

This paper presents a comprehensive evaluation of the impact of 
activation functions on the performance of backpropagation ANNs. 
The experiment conducted to assess the impact of the number of 
hidden layers in a neural network with the activation function (i.e., 
Aranda) on the model’s accuracy yielded insightful findings. The 
activation function exhibits a high degree of initial effectiveness, 
with diminishing and increasing (oscillating) returns upon the 
incremental addition of hidden layers. These results are crucial 
for the design of neural network architectures, as they highlight 
the potential for both underfitting and overfitting, depending on 
the number of hidden layers used. Further research is warranted 
to explore the underlying mechanisms at higher hidden layers that 
result in improved model accuracy. 

This analysis suggests a significant relationship between the 
complexity of the neural network, as dictated by neuron count, 
and the efficacy of the activation function. While certain activation 
functions may be better suited for networks with fewer neurons, 
others scale more effectively with increased complexity. The 
findings provide a valuable framework for the selection of activation 
functions in neural network design, emphasizing the need to tailor 
the activation function to both the specific task and the architecture 
of the model. It is evident that activation functions such as ‘Wave’, 
‘Modified_Elliott’, and ‘Aranda’ tend to perform optimally when the 
number of neurons is increased, consistently achieving accuracies in 
the highest values as the neuron count approaches 30. In contrast, 
functions like ‘Rootsig’ and ‘Softsign’ present a lower performance 
even with a greater number of neurons, with accuracies falling into the 
lower values in comparison with other activation functions.

With an increase in the number of neurons from 2 to 30, a clear 
pattern emerges, indicating the impact of neuron quantity on the 
accuracy of the model after 300 iterations. For configurations 
with fewer neurons (2 and 10), certain activation functions such 
as ‘Wave’ and ‘Codegem’ demonstrate a marked increase in 
accuracy, which is significantly higher than that of other functions. 
However, as the neuron count increases to 20 and 30, the disparity 
in accuracy between different activation functions diminishes, 
leading to a more uniform performance where most activation 
functions achieve high accuracy. Notably, the ‘Codegem’ function 
consistently exhibits high accuracy across all neuron configurations, 
suggesting its robustness and potential suitability for networks 
with varying complexities. In addition, the number of neurons 
in a neural network layer is a critical factor for achieving a higher 
accuracy rate (more neurons, higher accuracy rate). This finding 
is pivotal for designing efficient neural network architectures, as 
it emphasizes the importance of balancing network complexity 
with computational efficiency. Future neural network designs can 
leverage these insights to optimize their architectures for improved 
performance in diverse AI applications.
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