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ABSTRACT

Introduction: Modifiable Areal Unit Problems are a major source of spatial uncertainty, but their impact on 
infectious diseases and epidemic detection is unknown. 

Methods: CMS claims (2016-2019) which included infectious disease codes learned through Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) were extracted and analysed at two different units of 
geography; states and ‘home to work commute extent’ mega regions. Analysis was per member per month. Rolling 
average above the series median within geography and agent of infection was used to assess peak detection. Spatial 
random forest was used to assess region segmentation by agent of infection. 

Results: Mega-regions produced better peak discovery for most, but not all agents of infection. Variable importance 
and Gini measures from spatial random forest show agent-location discrimination between states and regions.

Conclusion: Researchers should defend their geographic unit of report used in peer review studies on an agent by-
agent basis.

INTRODUCTION

Understanding when cases of endemic disease are increasing 
(becoming epidemic) is partly determined by the geographic 
unit of surveillance and reporting. When geography is the unit 
of report, cases are aggregated into preconceived places and said 
aggregates are compared. This aggregation creates a complex form 
of bias called Modifiable Areal Unit Problem (MAUP) spatial 
uncertainty [1-3]. MAUP means that when artificial boarders 
contain terms (numbers), shifts in the boarders create meaningful 
shifts in statistical conclusions drawn from said terms [4-7]. In 
public health reporting, states and counties are the most common 
unit of report. Counties and states are juridical formed objects 
which follow MAUP terms [8-11]. There is nothing natural, disease 
specific or ‘epidemic detection friendly’ about using juridical 
districts for case aggregation and outbreak detection. Most likely 
state and territorial epidemiologists report cases at jurisdiction 
level because their decision making and reporting requirements are 
jurisdiction specific. Yet diseases do not infect jurisdictions; they 
infect individuals in transmission chains [12-14]. 

Traditionally population central tendencies for infectious diseases 

are learned from case reporting and statistical adjustments relative 
to known errors such as seasonality, non-respondent clinical sites 
or risk factors (age, vectors). These central tendencies are used 
for epidemic detection. The resulting rates learned from central 
tendencies may be mathematically accurate but the resulting 
action and inaction by health authorities can be inappropriate if 
the geographic unit of reporting masks or promotes an epidemic 
departure from endemic levels falsely. This occurs mostly with 
denominator selection but also may occur with jurisdiction 
boundaries for MAUP reasons. States in the United States (US) 
are not naturally formed or seasonally redistricted (unlike census 
tracts or congressional districts), nor are counties. Rather they are 
historically formed and do not reflect daily life or transmission 
dynamics. This paper reports the results of a comparative 
experiment which uses two geographic reporting standards for the 
same population over time to detect changes in population central 
tendencies to express infectious diseases. Static states and natural 
mega regions learned from ‘home to work address’ ranges offer an 
artificial to natural human terrain comparison. If a specific disease has 
a higher acuity in one geographic method than another, disease specific 
geographic units of report may be more accurate than artificial ones. 
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MATERIALS AND METHODS

Setting and participants

This study considered all Medicare and Medicaid claims from 2016-
2019 from the Chronic Conditions Warehouse. Any beneficiary 
with a populated beneficiary ID from 2016 through 2019 was 
considered; up to 2% of records lack attributable beneficiary ID in 
any given data year. Claims were enrolled if they had an infectious 
disease diagnosis code. Infectious disease diagnosis codes were 
mapped to agent of infection learned from SNOMED CT to 
ICD10-CM mapping. Individuals who had infectious diseases that 
were not mapped through SNOMED CT were not considered; a 
comprehensive infectious disease extract for ICD10-CM may not 
yet exist. This study considered 550 infectious disease diagnostic 
codes from ICD10-CM and 99 causative disease agents learned 
from SNOMED CT. Infection codes without agents were mapped 
to ‘not otherwise specified’, or NOS and agents with varying levels 
of specificity were post fixed NOS if generic level. For example, 
Hepatitis would return Hepatitis-NOS, Hepatitis-E would return 
Hepatitis-E as a causative agent. It is possible that a Hepatitis-NOS 
diagnostic code refers to Hepatitis-E; NOS infections reported 
below should be interpreted with care if there is diversity within 
disease dynamics between agents that could be expressed as NOS. 
There are several ‘infection’ codes which lack an agent, such as ‘ear 
infection’, ‘viral infection’ or ‘bacterial infection’. These codes were 
also aggregated as NOS, Viral-NOS or Bacterial-NOS respectively. 
Towards agent of infection aggregation from diagnostic codes, 
agents Influenza, Syphilis and Tuberculous subsume several (body) 
site, severity and sub-lineage specific diagnostic codes and would 
reduce to Influenza, Syphilis and Tuberculous agents distinct 
within the claimant-geography-month. 

Geography and time was harvested and assigned to a claim 
diagnosis from demography files which describe individuals with 
beneficiary IDs and home address. This model should approximate 
place-disease-case-counts Per Member Per Month (PMPM). Two 
geographic units of report were used, state of residence or mega-
commuter region of residence. The resulting data sets describe the 
distinct individuals per month billing for the agent of infection 
by state of residence or commuter district. Home zip code to state 
unit of report was learned from the US Census zip code to county 
relationship files for 2010-2020. Mega regions were learned from 
Nelson et al., via commuter distance extents which were used in this 
study [15]. Home zip codes were fit to Zip Code Tabulated Areas 
(ZCTA 2010) and intersected with a shape file of mega regions in 
Q-GIS. Analysis was completed in SAS and R.

Unit of analysis

This study considers the distinct number of Members (Medicare 
and Medicaid) Per Month billing a distinct infectious disease 
diagnosis claim where the disease could be an agent of infection. 
These PMPM cases were aggregated within geography, month, and 
year. They were further used as the numerator in a relative rate 
where the denominator is the total number of distinct members 
within a geography over the study period. This ‘rate’ is used below 
as the unit of analysis. 

Analysis 1: Departure from the central tendency by agent of 
infection and jurisdiction over time 

Across geographic units, rates were evaluated for their moving 
average departure from the median agent-geography rate. This 
moving average considered current, post and prior month or three 

value average. Months where the average rate was above the median 
within disease and geographic unit were summed and compared 
by geographic unit of reporting. Higher, ‘above median months’ 
should mean the fitness of a geographic unit for detection, as high 
tail PMPM can be detected more often in one geographic unit of 
reporting and not others. 

Analysis 2: Segmentation of geographies from infectious disease 
use cases 

Towards the segmentation of mega regions from mega regions and 
states from states, a spatial random forest model series was produced 
using spatial ML package in R [16]. The spatial model considered a 
choice set of diseases and attempted to use the disease claim PMPM 
divided by the members within a region (case rate) to tell regions 
apart from one another, as well as tell states apart from states. The 
models used choice agent PMPM rates as independent variables 
when considering leaf assignments. The state and region model 
considered 200 trees per forest. Table 2 presents’ model summary 
values and figure three describes the geography to disease specific 
variable importance from the models as an interquartile range. 

Segmentation of geography from disease agents can help detail the 
differences between geographic units of report using real world 
data and agent specific use cases. Towards interpretation, high 
model scores does not mean that the case rate was high, but that 
the specific disease rate was high value in making a prediction 
about which state or region is associated with which disease. Five 
nearest (unit of report) neighbours were used to locally weight the 
geographic evaluation/random forest associations; a rate could be 
higher than the five nearest geographic units or lower and achieve 
segmentation from neighbours. Spatial random forest considered 
all study units of report (states and regions).

RESULTS

States vs mega regions learned through ZCTA is a complex 
geoprocessing concept and central to this paper. Figure 1 
demonstrates this complexity visually with large black lines 
outlining states, colored, labeled regions demonstrating mega 
regions and ZCTA contained within as small enclosed black 
lines. For example the Philadelphia mega region includes ZCTA’s 
from states Pennsylvania, New Jersey, Maryland, Delaware and 
New York State. The city of Philadelphia is enclosed in the state 
of Pennsylvania. The state of Pennsylvania includes ZCTAs from 
some but not all megaregions: Philadelphia, Pittsburg, Upstate New 
York, New York City, and Washington-Baltimore mega regions. The 
mega regions are home to work maximum extents learned through 
census records (Figure 1). 

Figure 1: Mega region commuter extents with state outlines and 
ZCTA detail.
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Figure 2: Top 20 PMPM monthly moving average above the median 
by geography type and agent.

Within the spatial random forest model non-states (colonies, 
territories) were not used, Hawaii and Alaska were further excluded 
as their nearest neighbours are not rational study distances. 
Washington DC was considered. The segmentation models 
attempted to guess the geographic unit’s name from a select list 
of infectious agents and their monthly rates. The model knew 
the local area of the given unit through nearest neighbour local 
areas learned from centroid longitude and latitude. The Spatial 
ML package builds random forest ‘trees’ from the local area of a 
geographic observation rather than consider the total universe of 
observations. The models considered 200 trees and choice infectious 
agents (independent variable) could be used for assignment. The 
segmentation model was highly accurate, with states error (bad 
guesses) at 04.89% and regions at 02.65%; denoting that regions 
were better than states when considering segmentation potential 
learned from select agents. 

Table 2 describes the differences in GINI between the models. 
Here Mean Decrease GINI (MDG) could be understood as the 
distinctiveness of the segmentation decisions. The higher the 
MDG, the more acute the independent variables (disease case 
month volumes) used to make a split on a tree. For example, in 
table two syphilis had an increase in MGD between geography 
types of 113.08, so states used additional information more often 
when considering syphilis relative to regions. Larger values indicate 
that a geography is better at finding segmentation using fewer 
diseases when a specific disease is present in the decision. Note that 
different geography types consider different diseases when deciding 
on segmentation.
Table 2: Mean decrease GINI by region and state, spatial random forest 
model with choice agents.

Mean decrease GINI Region State Difference

HIV 695.86 409.54 286.33

Staphylococcus 411.54 167.36 244.18

Syphilis 341.71 228.62 113.08

Lyme 304.77 233.27 71.51

Clostridium difficile 255.92 228.74 27.18

Hepatitis C 255.65 329.38 -73.74

Tuberculous 120.69 239.66 -118.97

Eighty six out of ninety-nine infectious agents occurred in regions 
and states with greater than 11 PMPM and were analyzed. Table 1 
tabulates the relative case capture across all study months by agent 
of infection for states and regions for the 20 highest cumulative 
PMPM infections. Do note that ‘states’ in CMS includes Puerto 
Rico, Guam, US Virgin Islands as well as out-of-US region codes 
for beneficiaries abroad. Differences in table one should be 
interpreted with caution as there are slightly more regions than 
states, and total cases presented in table one is uncontrolled for 
eligible population (from which cases were drawn). Further, cases 
are distinct individuals who can be discovered once, monthly over 
four observation years for a maximum of ‘one person to agent to 
forty-eight case months’ ratio. Individuals who moved (changed 
their mailing address over the study period and crossed state lines 
would count twice under State PMPM). Individuals who moved 
across regions would also count twice should they bill for an agent 
of infection in the new region. Regions may capture a larger breadth 
of geographic change over time than states (Table 1).

Table 1: Top 20 infectious agents by case-month and geographic unit.

Agent of infection State PMPM cases Region PMPM cases

Tinea (Ring worm) 5,70,32,882 5,99,26,428

Streptococcus 1,32,90,331 1,41,70,451

Influenza 1,06,76,429 1,13,35,067

Viral NOS 76,49,741 80,31,743

Candida 71,25,179 75,26,649

HIV 61,62,992 62,85,040

Hepatitis C 39,60,574 41,53,671

Clostridium Difficile 22,71,677 24,00,716

Hand Foot (and) Mouth 
Disease (HFMD)

20,65,127 21,60,636

Syncytial Virus 17,22,965 18,42,686

Staphylococcus 17,00,042 18,04,160

Molluscum Contagiosum 12,47,306 13,05,903

Mycosis NOS 12,27,030 12,94,095

Pseudomonas 11,61,381 12,30,902

Bacteria NOS 9,98,400 10,48,788

Lyme Disease 8,12,570 8,73,648

Hepatitis NOS 6,50,807 6,75,578

Blast mycosis 4,47,016 4,74,869

Infection NOS 4,46,024 4,71,091

HERPES NOS 4,36,373 4,55,989

Figure 2 describes the relative difference between the share of states 
and regions in which the monthly moving average was above the 
series median. This should produce ‘peak’ detection. High peak 
months by states and regions are plotted below as the percent of 
geographic unit-agent-months. Both states and regions had superior 
detection for specific agents of infection. Note that ‘rare’ diseases 
are better detected with states than regions. The percent difference 
between geography ranged from .01% to 21.04% of months.
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denominator (spatial) comparison demonstrates that denominators 
should be specific, intentional, and defended. Prior work indicates 
that while the discovery of geo-specificity in human infections is 
certainly not novel, the attribution of a geographic unit of report 
to different disease detection sensitivity is an important discovery 
[17-21]. Most geo-specificity studies do not consider different 
heredity in their geographic comparisons as is done here. States are 
juridical and mega regions are learned from daily human behaviour 
of employment migration. If an infectious disease has ‘specific’ 
behavioural or vectorised terms of spread custom geographic units 
of report may improve outbreak detection, control, and eradication 
efforts. This is generally understood in vector borne disease circles 
but human to human transmission remains ‘under-vectorized’, 
especially in terms of a spatial epidemiology which discriminates 
between illnesses as is done here.

The relationship between risk pooling and natural history could be 
considered a ‘spatial acuity’ problem. This concept of spatial acuity 
of disease should be interpreted as the ‘accuracy’ or fitness for use of 
a unit of report. It should not qualify a unit of report inherently but 
can demonstrate how a disease has a relationship to populations in 
places. A representative spatial acuity for a disease agent should be 
highest of trialed options as above. This paper demonstrates that 
spatial acuity of disease can be detected, modeled, and compared 
using current methods. This paper does not demonstrate that the 
alternative geography, regions, are inherently fit for purpose but 
does demonstrate on a disease-by-disease basis their comparative 
fitness. Other administrative (Zip Code Tabulated Areas, census 
blocks) and natural (commuter district distance bands, home 
to work address ranges, cell phone GPS tessellations) could be 
evaluated on a disease by disease basis for relative fitness assessment 
as units of reporting [19,22]. 

This study has implications for clinical demography. Consider that 
New York State (NY) has historically had 10%-12% of the national 
HIV burden, and only 5%-6% of the national population [23]. 
By disaggregating New York State into several mega regions and 
considering multiple diseases in segmenting the regions from one 
another, Miami-Region has a more ‘deterministic’ burden of HIV 
illness in this study than the District of Columbia (DC) or NY-
State. This is because of the local area, nearest neighbour pass the 
model is performing before considering tree/leaf assignments. If 
the New York City-Region is surrounded by similar HIV prevalence 
regions the spatial acuity of its disease burden will be lower than a 
region like Miami which is surrounded by low prevalence regions. 

Life time infection risk in DC may be as high as one in thirteen 
people rivalling the worst affected nations [24]. The utility of 
saying that a jurisdiction has a ‘HIV infection life time expectation’ 
may be confounded by the natural history of the population 
which is regionalized (DC-Baltimore Region), segregated (racially, 
economically) and in the case of Chicago gentrification, migratory 
[25-29]. In this example HIV is under articulated using the state 
boundary as a unit of report and a different, perhaps population 
specific cartography could segment the risk of contracting HIV 
with more acuity. 

Future work should consider an epidemiology which differentiates 
between the distributions of ‘susceptible’ cases; it would perhaps 
be the natural extension of this effort. A geographic surface which 
computed regions as above could, with proper population detail 
make a more specific segmentation within a disease rather than 
a spatially determined view of a disease. Further, complex co-
infections like HIV, Tuberculosis and Hepatitis C are most likely 

Streptococcus 53.39 85.43 -32.04

Hepatitis B 44.19 102.27 -58.08

Varicella 40.68 54.31 -13.63

Hepatitis A 28.03 83.42 -55.39

Campylobacter 25.59 96.21 -70.62

Hand foot and Mouth 
disease

9.43 35.69 -26.26

Influenza 3.56 9.12 -5.56

Figure 3 considers the variable importance by geographic unit of 
report, which is the contribution the agent of infection made to the 
segmentation decision when spatial random forest models attempt 
to tell labelled geographies apart. The difference between variable 
importance should be understood as the interquartile range of the 
segmentation of the diseases associated with geographies. Large 
shifts are detectable within diseases such as HIV which had its largest 
variable importance for, Region: Miami at 160.83, and State: New 
York with 105.13. Several general population infections which lack 
geo-specificity were of low model value, in particularly Hepatitis A 
and Influenza. Staphylococcus (Regions) and Lyme disease (States) 
had noticeable departures in range. Larger interquartile ranges may 
suggest a geographic type’s superior fitness in detecting endemics 
becoming epidemic.

Figure 3: Model variable importance with choice agents.

DISCUSSION

The key finding from above is that geo-specificity improves 
detection of MAM above median, and that specific diseases may 
gain detection from specific geographic units of reporting. Here the 
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occurring in similar populations in the US raising the utility of 
complex spatialized views [30-32]. 

CONCLUSION

Intentional geographic units of analysis could improve endemic 
to epidemic detection. States and mega regions had competitive 
utility in series segmentation and neither provided a completely 
superior method for every agent of infection. Future studies should 
justify their use of geographic unit in infectious disease studies 
and consider spatial uncertainty in disease detection. Studies 
and perhaps infection surveillance should use disease specific 
geographic standards for their unit of surveillance on an agent by 
agent basis. 

LIMITATIONS

This method assumes that an increase in the index of billing in 
a geographic area on CMS claims is not irrational; it may well be 
in some cases. Treatment, novel infection, and incidence cannot 
be disambiguated readily from prevalence in claims data. The 
assumption of co-linearity between diagnostics and positive test 
results over time is not evaluated here either. A ‘true’ case study 
might consider reportable infections as a unit of analysis rather 
than claims data but such record systems often report pre-aggregated 
records rather than the re-identifiable encounter level records use 
here. Consequently this data set is not a ‘true’ epidemiology of 
infection in the CMS population as only infections that were billed 
and mapped through SNOMED CT were considered. Further the 
quality of ICD10-CM to SNOMED CT mapping to infectious 
diseases remains under evaluated. Treatment (HIV in particular) 
was not disambiguated from novel infection. Claims data can 
describe infectious agents, but these exposures to infectious disease 
codes could well be justifications for a screening test rather than a 
‘true positive’ infection case. In turn the unit of analysis should be 
understood as the departure from the rolling median for outbreak 
detection rather than a true case epidemiology.

The denominator of the rate in the above study is simply the 
available members; infectious diseases are perhaps pickier than this 
in most real-world scenarios. The susceptibility of a subpopulation 
to a disease was not considered in calculating the denominator 
and a cases-to-susceptible rate may produce larger effect sizes than 
the case-to-beneficiaries rate period presented here. For example, 
Hand, Foot and Mouth Disease (HFMD) is the providence of small 
children in population dense settings such as day care centers; 
all members were considered HFMD eligible in this model. The 
consequences of this is perhaps an underestimation of the study 
effect sizes. 

The results of this study should be considered an estimate for 
considering novel units of reporting, rather than a true floor or 
ceiling of infection burden within the CMS population. Most 
likely CMS patients bill care to non-CMS payors such as out of 
pocket or third-party insurance program like Human Resources 
Service Administration Ryan White, VA, health savings accounts 
or private insurance. These non-CMS payors should capture some 
of the infectious disease codes in every data year without sharing 
charges with CMS. In turn CMS would be none the wiser to the 
true burden of infection among the population. 
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