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ABSTRACT

Microtubules are present in our whole body. Microtubules are regulated by mlcrotubule—assoaat
protein. Microtubules exh1b1t dynamlc instability, an intrinsic behav1or characterized by algg

igger the
y small
cts on the brain

released mamly through the activation of nerves connected to the adrenal
secretion of adrenaline and thus increase the levels of adrenaline in the blood. The

that it hasMirect link with
microtubule assembly and disassembly and it also affects cog drenaline also controls
oxidative stress. It becomes interesting and imperative to find ou ine controls oxidative
stress and microtubule organization. Oxidative stress croyygbule growth. Microtubules play
an important role in hormone release. Keeping microt@bule a key po¥ént, the present study focusses
on the docking of adrenaline into Microtubul s (MAPs), alpha and beta tubulin

conformation, stability, binding ene
ligands. Adrenaline docked succe

e Associated Proteins (MAPs), alpha and beta

ed to an interesting observation that Microtubules

neurodevelopment, including cell proliferation, differentiation

and migration, as well as accurate axon guidance and dendrite
ervous System (CNS) and

arborisation. The organization and remodeling of the MT network
ely complex process, controlled

is also essential for developing neurons to form axons, dendrites
and assembles synapses [4,5].

of Microtubule (MT), actin and

ent’ networks [1-3]. The dynamic microtubules ~ Microtubules are the Dimers of a- and B-tubulin polymerize to form
creating cell polarity, as well as aiding in neural ~ microtubules, which are composed of 13 protofilaments assembled

rder to establish appropriate neural connectivity ~— around a hollow core [6]. Tubulin dimers can depolymerize as
development. The elaborate MT network is integral to ~ well as polymerize, and microtubules can undergo rapid cycles
acilitate numerous morphological and functional processes during ~ of assembly and disassembly. Both o- and B-tubulin bind GTP,
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which functions analogously to the ATP bound to actin to regulate
polymerization. In particular, the GTP bound to B-tubulin (though
not that bound to a-tubulin) is hydrolyzed to GDP during or shortly
after polymerization. The Microtubule Associated Proteins (MAPs)
have been found to have an additional property that has received
considerable attention. Walker, et al. studied the dynamic instability
of individual microtubules (MAP-tau, MAP-2 and the fractioned
heat-stable MAPs) [7]. A model was also proposed to explain how
MAP-2 and MAP- tau bind to the microtubule lattice at sites along
protofilaments so that the MAPs promote polymerization. Rapid
shortening, when it occurs, proceeds primarily by the dissociation
of short fragments of protofilaments, which contain the bound
MAP:s. In the absence of the MAPs, tubulin assembles poorly, if at
all, under most in vitro conditions. The MAPs dramatically promote
the assembly of tubulin into microtubules [8].

Recent research also reports that adrenaline plays a significant
role in microtubule organization. Adrenaline is released by the
sympathetic nervous system and adrenal medulla and is involved
in several physiological functions including regulation of blood
pressure, vasoconstriction, cardiac stimulation, and regulation of
the blood glucose levels [9,10]. Noradrenaline is mainly produced
by neurons within the locus coeruleus and takes part in diverse
motor and mental functions including locomotion control,
motivation, attention, and cognition and memory formation
[11]. It also regulates the differentiation, plasticity, and survival of
neurons in both developing and adult brains. In addition it seems
that locus coeruleus-noradrenaline system plays a significant role in
compensatory mechanisms responding to acute brain injuries, and
in defining the progression of neurodegenerative disorders s
as Parkinson’s and Alzheimer’s disease [9,10]. Changes in s
strength are believed to underlie learning and memory.
also explored that norepinephrine is an essential

OT'& )
synaptic plasticity with consideration o ii

protein [12-14]. The secondary
p/and also the interaction between
vas studied with the help of circular
time resolved fluorescence spectroscopy

conditions, which shows that propofol strongly affects the
merization of tubulin and self-organization of microtubules [13].
ecent research study also focused on among the many functions
postulated for microtubules so far, it also plays an important role
in hormone release [15]. Research workers in their study have also
shown that hormone like epinephrine act on memory [16].

Adrenaline also has an anabolic effect on the enhancement of
protein synthesis and inhibition of protein degradation [9,17]. The
potential role of neurotransmitters adrenaline and noradrenaline
on oxidative stress related processes were investigated considering
different aspects of their reactivity, including their peroxyl radical
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scavenging activity, their Cu (II) sequestering ability, and their
possible regeneration [18]. Density functional theory was used
to investigate the potential role of neurotransmitters adrenaline
and noradrenaline regarding oxidative stress. It is predicted
that they can be efficient as free radical scavengers both in lipid
and aqueous media, with the main reaction mechanism being
the hydrogen transfer and the sequential proton loss electron
transfer, respectively. Also, adrenaline and noradrenaline can be
considered as both protectors and molecular targets of oxidative
stress. From a chemistry point of view oxidative stress is a chemigal

and the increased production of reactive oxygi
MT dynamics thereby decreasing K™ chagag
many health disorder caused by oxidg
has also been reported to be involyed

effect of propofol
Protein-li

can become the basis of protein’s function in
other ligands and also the protein’s flexible

of microtubules, MAPs, alpha and beta tubulin with
epaline to understand the underlying link between microtubule,
crotubule Associated Proteins (MAPs), Adrenaline and memory.

METHODOLOGY

The present study included proteinigand interaction and was
carried out using ArgusLab, Discovery Studio Visualizer, PyMol,
Autogrid and AutoDock vina simulation methods. Standard
protocols were followed for the present docking study [23-33].

RESULTS AND DISCUSSION

Microtubules and adrenaline interaction

The 3D structure of Microtubules was visualized with the help of
Discovery studio visualizer which shows the presence of alpha and
beta-chain (Figure 1a). Adrenaline has been a key component of
advanced life support algorithms for many years. With the help of
various docking software, docking of Adrenaline with microtubules
helped in studying the interaction between them and also helped
in analyzing the binding energy and binding site of microtubules
when adrenaline docked into microtubules. The 3D-structure of
Adrenaline has a benzene ring in which two hydroxyl (OH) groups,
a methyl (CH,) group and an amine group attached to this methyl
group (Figure 1b). Docking of Microtubule with ligand (adrenaline)
was carried out with AutoDock Vina and Argus Lab. Adrenaline
docked into Microtubules successfully with the help of AutoDock
Vina. During the docking adrenaline binds with different binding
site of Microtubules and change its conformation. AutoDock
Vina gave the best ten binding poses or conformations which have
the lowest binding energy. It is inferred that with the minimum
energy/affinity, protein structure is more stable. In the first pose
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the binding affinity is -7.5 kcal/mol, whereas in the second pose it ~ Docking of microtubules and adrenaline with Arguslab
is -7.0. -7.5 kcal/mol is lower than the -7.0, it is inferred that it has

high stability than -7.0. However, there is small change in energy. Adrenaline docked into Microtubules successfully with the help

o ) ) . . of Arguslab. During the docking adrenaline bind with different
The Vlsuallzgt1on .Of docking Of adfena}me W}th microtubules Was  binding site of Microtubules or change its conformation. Arguslab
also dor}e usmg discovery studio Vlsuather (Figure 1c). Adrenaline gave the best ten binding poses or conformations which have the
docked into microtubules successfully with the help of AutoDock. .t binding energy. It is inferred that with the minimum energy/
DF‘rmg the docking adre.nahne bind Wlth different binding sites of affinity, protein structure is more stable. In the first pose the binding
microtubules or change its conformation. AutoDock gave the best affinity is -5.25 kcal/mol, whereas in the second pose it is -5.0 kcal/
ten binding poses or conformations which have the lowest binding 1 525 kcal/mol is lower than the -5.0, it is inferred that it has

energy. It is inferred that with the minimum energy/affinity, protein high stability than -5.0 kela/mol. however there is small cha
structure is more stable. In the first pose the binding affinity is

-6.07 kcal/mol, whereas in the second pose it is -5.70 kcal/mol.
-6.07 kcal/mol is lower than the -5.70, it is inferred that it has high
stability than -5.70 kcal/mol. however there is small change in
energy. Lowest Binding energy is -6.07 kcal/mol (Table 1).

BETA_CHAIN

_AL/P‘HA—CHAIN
N\

Ligand

CONOFORMATION-1 CONFORMATION-2
4
Binding Energy 607 Binding Energy 494
Kl 3551 M i 2409 uM
Inteemolecular Enecsy -1.56 Intermoleculas Energy 673
Internal Energy Q.79 Tnternal Enecsy 71
Torsonal Enersy L9 Torsonal Energy 179
Unbound Extended Energy .79 Unbound Extended Energy 221
Clustes RMS Q2 Clusrer RMS 00
Ref RMS 5067 Ref RMS 91.1

Figure 2: Conformations after docking with lowest binding energy. Note: (a) Energies during first conformation; (b) Energies during second

conformation.
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Table 1: Adrenaline and microtubulin docking energies using AutoDock Vina.

Rank Sub-rank Run Binding energy Cluster RMSD Reference RMSD Green pattern
1 1 6 -6.07 0.00 80.67 RANKING
1 2 8 -5.70 0.74 80.78 RANKING
2 1 10 -4.94 0.00 91.10 RANKING
3 1 7 4.93 0.00 59.98 RANKING
4 1 1 -4.16 0.00 88.35 RANKING
4 2 2 -4.56 0.46 88.33 RANKI
5 1 5 4.13 0.00 98.20 RADKI
6 1 3 -4.44 0.00 96.16 NKING
7 1 4 4.14 0.00 54.02 RANRING
8 1 9 -3.44 0.00 82.65 - RANK

Alpha-Tubulin and adrenaline interaction

0/B heterodimers polymerize into microtubules, which are
indispensable for cell division and growth. The expression of
specific isotypes of tubulin is associated with cancer, but the
molecular mechanisms behind this effect are still largely unknown.
The figure below (Figure 3a), is the 3-D structure of Alpha-Tubulin
visualized with the help of discovery studio.

Arguslab docking result: Adrenaline docked into Alpha-Tubulin
at different site successfully with the help of Arguslab. Duri
the docking adrenaline bind with different binding site of
Tubulin and change its conformation. Arguslab gave the
binding poses or conformations which have the lo
energy. It is inferred that with the minimum energy/
structure is more stable. In the first pose th
-8.5 kcal/mol, whereas in the second pose it
first conformation with binding energy -8.5 k
the second conformation, however t§

(Figure 3b).

MWGtoDock Vina gave the best
ions which have the lowest binding

tubulin and this interaction are visualized using Pymol.

Dock docking result: Adrenaline docked into AlphaTubulin
uccessfully with the help of AutoDock. During the docking
adrenaline bind with different binding site of Alpha-Tubulin or
change its conformation. AutoDock gave the best ten binding
poses or conformations which have the lowest binding energy.
It is inferred that with the minimum energy/affinity, protein
structure is more stable. In the first pose the binding affinity is
-4.27 kcal/mol, whereas in the second pose it is -3.46 kcal/mol.
4.27 kcal/mol is lower than the -3.46 kcal/mol, it is inferred that
it has high stability than -3.46 kcal/mol. however there is small
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o # of Adrenaline

uto Dock (Table 2). The

to consideration, which

change in energy. These are the
interaction with Alpha- i

showed all changes occurred due

dhido genes. At least seven different [-tubulins isotypes
are differentially expressed in human cells. All drugs
at are known to bind to human tubulin bind to [-tubulin. Beta-
lin is encoded in vertebrate genomes by a family of six to seven
fdnctional genes that produce six different polypeptide isotypes.
Figure 5a, is the 3D structure of Beta-Tubulin visualized using
Discovery studio visualizer.

AutoDock Vina docking result: Adrenaline docked into Beta-
Tubulin successfully with the help of AutoDock Vina. During the
docking adrenaline bind with different binding site of beta-Tubulin.
AutoDock Vina gave the best ten binding poses or conformations
which have the lowest binding energy. It is inferred that with the
minimum energy/affinity, protein structure is more stable. In
the first pose the binding affinity is -6.2 kcal/mol, whereas in the
second pose it is -6.1 kcal/mol. -6.2 kcal/mol is lower than the -6.1
kecal/mol, it is inferred that it has high stability than -6.1 kcal/mol.

however there is small change in energy.

Arguslab docking result: Adrenaline docked into Beta-Tubulin
successfully with the help of Arguslab. During the docking
adrenaline bind with different binding site of Beta-Tubulin or
change its conformation. Arguslab gave the best ten binding poses
or conformations which have the lowest binding energy. It is
inferred that with the minimum energy/affinity, protein structure
is more stable. In the first pose the binding affinity is -7.66 kcal/
mol, whereas in the second pose it is -7.59 kcal/mol. -7.66 kcal/
mol is lower than the -7.95 kcal/mol, it is inferred that it has high
stability than -7.95 kcal/mol. however there is small change in
energy (Figure 5b).

AutoDock docking result: Adrenaline docked into BetaTubulin
successfully with the help of AutoDock. During the docking
adrenaline bind with different binding site of BetaTubulin or
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change its conformation. AutoDock gave the best ten binding  whereas in the second pose it is -5.95 kcal/mol. -6.25 kcal/mol is
poses or conformations which have the lowest binding energy. Itis  lower than the -5.95 kcal/mol, it is inferred that it has high stability
inferred that with the minimum energy/affinity, protein structureis ~ than -5.95 kcla/mol. however there is small change in energy.
more stable. In the first pose the binding affinity is -6.25 kcal/mol,

Figure 3: (a) 3-D Structure of alpha-tubulin; (b) Int

Table 2: Binding energies of alpha-tubulip interacti i aline.
Rank Sub-rank’ Run Binding energy Cluster RMSD Reference RMSD
1 A 1 9 -4.27 0.00 18.28
2 8 -3.46 1.20 18.28
‘ ’ 1 5 4.18 0.00 21.30
3 ) ' 2 1 -3.72 1.24 21.99
1 7 3.1 0.00 19.43
3 2 3 -3.66 1.15 19.92
v 3 3 10 -3.53 1.85 20.32
3 4 4 -3.51 0.56 19.44
3 5 2 -3.51 0.68 19.16
4 1 6 -3.33 0.00 17.84
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Con.-1
Binding Energy 3.7
Kl 737.21 uM
Intermolecular 6.06
Enersy
Internal Energy 1.6
Torsional Energy 1.79
Usnbound Extended <16
Enerzy
Cluster RMS 0.0
Ref RMS 1628

Con.-2

Binding Energy 336
= 2.9 mM
Iatermolecular 3.23
Enersy

Internal Energy 193
Torsional Energy 1.79
Usnbound Extended -193
Enersy

Cluster RMS 1.2
Ref RMS 18.28

conformation.

Figure 4: Conformations after docking with lowest binding energy. Note: (a) Energies during first conformation; (

Energies Wlring se¢ond

with adrenaline using Arguslab.

and showed all changes

able 3, Figure 6).

akes up the microtubule wall. Microtubules
r of proteins in addition to tubulin [1-3,34].
ave been referred to by the acronym MADPs, or

tcific binding site for microtubules. The MAPs have been
d to have an additional property that has received considerable
ttention. In the absence of the MAPs, tubulin assembles poorly,
if at all, under most in witro conditions. The MAPs dramatically
promote the assembly of tubulin into micro tubules (2,3].

MAP2 serves to stabilize MT growth by crosslinking MT with
intermediate filaments and other MTs. MAP?2 isoforms are neuron-
specific cytoskeletal proteins enriched in dendrites and perikarya,
implicating a role in determining and stabilizing neuronal
morphology during neuron development.

Biochem Anal Biochem, Vol.13 Iss.2 No:1000538

The Figure below (Figure 7a), is the 3D-Structure of MAP2 protein
visualized using discovery studio visualizer.

Arguslab docking result: Adrenaline docked into MAP2 successfully
with the help of Arguslab. During the docking adrenaline bind
with different binding site of MAP2 or change its conformation.
Arguslab gave the best ten binding poses or conformations which
have the lowest binding energy. It is inferred that with the minimum
energy/affinity, protein structure is more stable. In the first pose
the binding affinity is -6.03 kcal/mol, whereas in the second pose it
is -5.97 kcal/mol. -6.03 kcal/mol is lower than the -5.97 kcal/mol,
it is inferred that it has high stability than -5.97 kcal/mol. however
there is small change in energy (Figure 7b).

AutoDock Vina docking result: Adrenaline docked into MAP2
successfully with the help of AutoDock Vina. During the docking
adrenaline bind with different binding site of MAP2 or change its
conformation. AutoDock Vina gave the best ten binding poses or
conformations which have the lowest binding energy. It is inferred
that with the minimum energy/affinity, protein structure is more
stable. In the first pose the binding affinity is -6.3 kcal/mol, whereas
in the second pose it is -5.8 kcal/mol. -6.3 kcal/mol is lower than
the -5.8 kcal/mol, it is inferred that it has high stability than -5.8
kcal/mol. However there is small change in energy. In the Figure
(Figure 7c), below the resultant interaction MAP2 with Adrenaline
was visualized using Pymol.
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Rank Sub-rank Run Binding energy Cluster RMSD Reference RMSD
1 1 2 -6.37 0.00 469.95
1 2 3 -5.80 1.58 469.34
2 1 4 -0.24 0.00 460.95
3 2 8 5.97 1.62 460.36
3 1 10 -6.22 0.00 458.65
3 2 9 -6.03 1.06 458.88
3 3 1 5.86 1.25 45848 N
4 1 7 -5.68 0.00 459.5
5 1 5 -5.65 0.00 48
6 1 6 -5.40 0.00 .25

conformation.

Figure 6: Conformations after docking with lo

CONFORMATION-1

Binding Enersy

<558

1d 55.73 uM
Intermolecular Enerzy 159
Internal Enersy 145
Torsional Enersy 1.79
Unbound Extended 145
Enersy

Cluster RMS 138
Ref RMS 469.34

adrenaline.

Figure 7: (a) 3-D Structure of MAP2 protein; (b) Binding energy of interaction of MAP2 protein with adrenaline; (c) MAP2 interaction with

Biochem Anal Biochem, Vol.13 Iss.2 No:1000538
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AutoDock docking result: Adrenaline docked into MAP2
successfully with the help of AutoDock. During the docking
adrenaline bind with different binding site of MAP2 or change
its conformation. AutoDock gave the best ten binding poses or
conformations which have the lowest binding energy. It is inferred
that with the minimum energy/affinity, protein structure is more
stable. Docking with AutoDock gave the best possible conformations
in which the first pose showed the binding affinity -5.66 kcal/mol,
whereas in the second pose it is -5.63 kcal/mol. It is inferred that
it has high stability than -5.63 kcal/mol. However there is small
change in energy. These are the binding energy of interaction of
MAP2 protein with Adrenaline using AutoDock (Table 4). The
two best conformations have been taken into consideration, which
showed the change in energy and showed all changes occurred due
to change in conformations (Figure 8).

MAP-TAU protein and adrenaline interaction

The Tau proteins (abbreviated from tubulin associated unit) are a
group of six highly soluble protein isoforms produced by alternative
splicing from the gene MAPT (microtubule-associated protein tau).

They have roles primarily in maintaining the stability of
microtubules in axons and are abundant in the neurons of the
central nervous system. Microtubule-Associated Proteins (MAPs)
of the MAP2/Tau family include the vertebrate proteins MAP2,
MAP4, and Tau and homologs in other animals. All MAP2/Tau
family proteins have microtubule-binding repeats near the carboxyl
terminus, each containing a conserved KXGS motif that can be
phosphorylated [8].

through its binding to ribosomes, which
ribosomal function, reduction of protein s
synaptic function. Tau interacts specifically w
proteins, including the crucial reguldge

Arguslab docking
successfully wit

OPEN 8ACCESS Freely available online

gave the best ten binding poses or conformations which have
the lowest binding energy. It is inferred that with the minimum
energy/affinity, protein structure is more stable. In the first pose
the binding affinity is -5.98 kcal/mol, whereas in the second pose
it is -5.7 kcal/mol. -5.98 kcal/mol is lower than the -5.7 kcal/mol,
it is inferred that it has high stability than -5.7 kcal/mol. However
there is small change in energy. Interaction of MAP-TAU protein
with adrenaline using Arguslab give the best binding energy -4.55
kcal/mol (Figure 9b).

AutoDock Vina result: Adrenaline docked
successfully with the help of AutoDock Vina. During the

in the second pose it is -4.5 kcal/mol.
the -4.5 kcal/mol, it is inferred that i

; docking software.
It showed the site where’a d with MAP-TAU protein

(Figure 9c¢).

e best ten binding poses or conformations which
jng energy. It is inferred that with the minimum

I, it is inferred that it has high stability than -4.74 kcal/mol.
ever there is small change in energy. These are the binding
energy of interaction of MAP TAU protein with adrenaline using
AutoDock (Table 5). The two best conformations have been taken
into consideration, which showed the change in energy and showed
all changes occurred due to change in conformations (Figure 10).

Above results are summarized into a tabular form with comparison
showing different binding energy with different docking software
(Table 6).

AutoDock Vina gave the lowest binding energies (great stability)
of adrenaline with microtubules. Arguslab gave the lowest binding
energies of adrenaline with Alpha-tubulin.

Run Binding energy Cluster RMSD Reference RMSD

3 -5.66 0.00 348.68

2 1 10 -5.63 0.00 349.02
2 2 9 -5.63 0.95 348.90
’ 2 3 8 5.45 1.23 348.93
2 4 5 -5.40 1.50 348.70
3 1 4 -5.26 0.00 347.31
3 2 6 -4.97 0.65 347.55
4 1 1 -5.24 0.00 348.73
4 2 7 -5.00 0.42 348.76
5 1 2 5.11 0.00 348.69

Biochem Anal Biochem, Vol.13 Iss.2 No:1000538
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it

CONFORMATION-1

Binding Ensroy -3.66 Binding Enersy 363
5 7043 uM d 7526 uM
Intermolecular Energy -7.43 Intermoleculas Enerzy ST42
Internal Enersy -1.37 Internal Enersy -1.72
Torsional Eneesy 1.79 Torsional Enersy 1.79
Unbound Extended Enersy -1.37 Usnbound Extended Eneroy 172
Cluster RMS 00 Cluster RMS 0.0
Ref RMS 34868 Ref RMS 314002

Figure 8: Conformations after docking with lowest binding energy. Note: (a) Energies during first conformati
conformation.

during second

Pass T: 455 bcalfmal

LIGAND INTERACTION

Mding iergies of Map-Tau interaction with adrenaline.

Sub-rank Run Binding energy Cluster RMSD Reference RMSD
1 1 3 -4.77 0.00 76.81
1 2 4 -4.74 0.51 76.85
2 1 10 4.22 0.00 81.24
3 1 5 4.12 0.00 71.86
3 2 9 3.71 1.17 78.62
4 1 6 -4.00 0.00 84.73
5 1 8 -3.92 0.00 82.45
6 1 1 -3.90 0.00 80.29
7 1 7 -3.86 0.00 7137
8 1 2 -3.81 0.00 88.01

Biochem Anal Biochem, Vol.13 Iss.2 No:1000538 9
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CONFORMATION1 CONFORMATION-2
Binding Energy 477 Binding Energy 477
[ 316.63 uM | 336,99 uM
Tatermolecular Energy 636 Tatermolecular Enecsy 653
Tntecaal Enersy 137 Taternal Energy 155
Torsional Enersy 179 Torsonal Ensegy 179
Unbound Fxrended Enerzy 137 Unbound Extended Enersy 135
Chuster RMS 00 Clustze RMS 031
Ref RMS 7651 Ref RAMS 7651

conformation.

Figure 10: Conformations after docking with lowest binding energy. Note: (a) Energies during first confo%

uring second

Table 6: A comparative account of binding energies obtained after molecular docking using different docking

tware.

ArgusLab (“lowest binding

AutoDock (“lowgst binding ytoDock Vina (“lowest binding

$.NO. Protein+ligand energy in kcal/mol”) energy in kcal/Mgol”) energy in kcal/mol”)
1 Microtubules+adrenaline -5.24 “ 1.5
2 Alpha-tubulin+adrenaline 8.5 N7 5.6
3 Beta-tubulin+adrenaline -1.65 , —6.y 6.2
4 MAP2+adrenaline -6.08 -5.66 6.3
5 MAPTAU+adrenaline -4.55 -4.77 4.6
CONCLUSION irman, Advisory Committee on Education, Dayalbagh

Microtubules are present in our whole bodf Among the ma

R0 Dock, AutoDock Vina and

been used in the present study to

ne in the target protein (Microtubule, alpha-tubulin,
eta-tubulin, MAP 2 and MAP Tau). Docking of adrenaline into
erent target proteins could change the conformation since it
ound at different sites in the target proteins. It is also concluded
that with change in conformation of target protein, their topology
also changes flexibly but the entire stored information remains
intact with the target protein. Microtubules and Adrenaline
together control brain activity and help to maintain the conscious
state of the being at physical level.
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