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ABSTRACT

The complexity of industrial logistics and manufacturing processes is constantly increasing. Quantum computing, 
a key technology of the coming decades, is expected to excel in solving combinatorial optimization problems better 
than traditional methods. This study reviews current quantum optimization applications in logistics and transfers 
a vehicle routing use case to a new matrix production use case for resource-efficient material flows. Simulations 
were conducted on a local quantum simulator using the Quantum Approximate Optimization Algorithm (QAOA) 
algorithm, achieving optimal results. The theoretical material flow model, created for testing, is based on multiple 
assumptions and needs adaptation and extension for practical application.
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INTRODUCTION

Logistic uncertainties and disruptions have been on a rise in the 
wake of a worldwide pandemic, geopolitical tensions, growing 
protectionism, and environmental hazards. High demand 
fluctuations, missing labor forces, or bankruptcy lead inevitably to 
prolonged lead times, material shortages, port congestions, cargo 
handling inefficiencies, and more [1,2]. Hence, companies are 
searching eagerly for the best solution to make their supply chain 
as resilient as possible to counter unpredictable risks and volatility 
[3]. As key enabling technology of the upcoming decades next to 
artificial intelligence or 5G/6G, quantum computing could assist 
enterprises to reach that goal in near future by solving complex 
optimization problems across the whole supply chain [4]. While 
traditional computers perform step-by-step calculations, quantum 
computers can execute computations simultaneously by using 
quantum key effects like superposition and entanglement [5]. The 
use cases can be split into five significant problem classes [6-11]:

• Traveling salesman problems such as Vehicle Routing Problem 
(VRP), fleet management, robot production path planning, 
etc. 

• Knapsack problems such as truck loading, cargo handling, 
order sizing, etc.

• Scheduling problems such as Job-shop Scheduling Problem 

(JSP), shift scheduling, etc.

• Layout planning problems such as factory layout planning, 
placement of electric vehicle charging stations, etc.

• Disruption forecasting such as risk and impact simulations on 
networks, etc.

Most of the used cases listed here are still either distinctly restricted 
in sparking their full potential or ongoing research objects. Also, 
quantum annealers with model of over 5000 quantum bits (qubits) 
are used exclusively in most of them are listed and practically 
executed used cases, since circuit-based models are still restricted to 
a maximum of 433 qubits recently and even less in accessible cloud 
platforms [12].

Currently, the two leading approaches are superconducting and 
trapped ion quantum computers [14].

Optimization algorithms that are applicable as of now are 
Variational Quantum Algorithms (VQA), which determine the 
minimum cost of a defined cost function as the problem’s solution 
[15]. Two exemplary and often utilized VQAs are the Quantum 
Approximate Optimization Algorithm (QAOA) and the Variational 
Quantum Eigensolver (VQE) [16,26]. 

This study focuses on circuit-based quantum models and inspects 
the transferability of logistical optimizations to material flow 
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• Equipment capacity

• Loading capacity

• Time windows

• Priority relations

• Availabilities

Especially JSPs contain further important variables like the number 
of operations per job and their given sequence, workstations’ 
processing times and capabilities, and more, which increase the 
computing complexity.

Optimization dilemma
The complexity and required computing power rise steadily the 
more variables are included in a problem definition. Hence, a 
perfect optimal solution is not obtainable in many cases today. 
This will most likely stay like that in the future, even if quantum 
computers have developed to a higher performance level [13]. For 
this reason, we must tailor the number of variables or split up the 
problem to make it mappable to a processing unit and to satisfy 
the desired approximation time. Interdependent or competing 
variables can further impede the computation process.

MATERIAL FLOW RESOURCE OPTIMIZATION

The studies and scripts from references guide the transfer of a 
logistical optimization use case to a material flow use case [19,23,24]. 
These studies analyzed vehicle routing scenarios using IBM’s Qiskit 
framework. The ‘collision-free multi-vehicle routing’ case, defined 
by [19] and implemented by [24], is suitable for transfer due to 
its focus on multiple material flows and machines handling one 
unit at a time, avoiding collisions. A time-dependent model uses 
a sliced graph to represent nodes and arcs, each node representing 
a machine performing tasks at specific time ticks. This requires a 
qubit for each node of a job or material flow. The study’s small-
scaled model is limited by current quantum simulators, which 
support up to 32 qubits. For real models with unknown timelines, 
problem variables must be discretized [25].

Figure 1: MMS layout and sliced graph for three exemplary jobs.

Conceptual model and implementation 
This project’s model is based on a Flexible Job-Shop Scheduling 
Problem (FJSP) within an MMS of six machines. Each machine 
holds multiple process skills for the manufacturing of three 
different product types. Figure 1 depicts this graph and lists the 
three conceptualized material flow arrays dyed in one respective 
color. Each array element is one binary variable in the generated 

resource optimizations. Therefore, an existing vehicle routing use 
case is transferred to a newly conceptualized matrix production use 
case regarding resource-efficient material flows.

OPTIMIZATION APPROACHES

Classical metaheuristic algorithms for solving combinatorial 
optimization problems like the VRP rely on weighted graphs G 
(V,E,w), with V as vertices, E as edges, and was edge weights. Popular 
algorithms include Dijkstra, A*, and advanced neural network or 
evolutionary algorithms. The bi-directional Dijkstra algorithm, 
for instance, finds the most cost-effective route by simultaneously 
searching the graph from both the source and destination until the 
best route is identified.

To map combinatorial optimization problems on quantum 
computers, Quadratic Unconstrained Binary Optimization 
(QUBO) formulations are widely used as an approach [18-21]. Each 
qubit represents one problem variable in a QUBO formulation. 
Typically, it is either assigned to a vertex or edge in a problem 
graph. Taking a VRP as example, a vertex could represent a 
destination, and an edge could represent a connecting route 
between two destinations [22]. To allow VQAs like the QAOA or 
VQE to process a QUBO problem, it must be transferred into an 
Ising Hamiltonian. This is because VQAs are based on such Ising 
formulations that are solved by converging to their minimal energy 
state [23].

Disruption factors
Logistics and material flow processes are predominantly taking 
place in constantly changing environments. Previously planned 
process flows can be disturbed by uncontrollable sub-processes or 
events happening outside of the contemplated area at any time. 
Therefore, a reprocessing might be necessary in the presence of an 
occurrence. The following disruptions could hinder both, logistical 
and material flow use cases, in a smooth execution.

• Vehicle/Machine/Workstation breakdowns

• Outage of material-handling equipment

• Collapse of information system

• Personnel shortage

• Delays

• Environmental factors

There are other disruption factors like material shortages, short-
term changes in customer demand, outage of logistics providers 
etc., that are more problem specific. Also, universal factors like 
(geo-)politics or others can impact the execution approach, but 
rather strategically than operationally. These can be neglected in 
the computation of optimization use cases.

Variables
In combinatorial optimization problems, there are plenty of 
input and output variables to consider. The most important and 
relevant ones for the given problem need to be transferred into 
a mathematical model to gain an approximate optimal solution. 
Some input variables, which can be equally included in VRPs and 
JSPs, are:

• Number of destinations/producing entities

• Number of start or endpoints

• Distances and weights
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two used cases, involving two jobs, differ in the number of optimal 
solutions: Six for the first and one for the second, both with an 
optimization cost of 11. 

These scenarios were examined separately to assess differences 
in computational power and simulation time. The third use case 
involves three jobs with multiple optimal paths, exploring the full 
range of material flows, with a best-case optimization cost of 18.

Simulation remarks
The accuracy of the quantum circuit model results can be adjusted 
by modifying three key parameters: Maxiter, reps, and shots. 
‘Maxiter’ sets the maximum iterations for the classical optimizer 
to find optimal quantum circuit parameters. ‘Reps’ determines the 
number of repeated parameterized layers of unitary operations. 
‘Shots’ defines the number of repetitions and measurements 
performed to estimate the cost function’s expected value. Simulation 
experiments show that ‘shots’ significantly improves accuracy more 
effectively and quickly than the other two parameters. 

Thus, ‘shots’ will be the primary parameter adjusted in upcoming 
use cases. Results from simulation runs with ten QAOA iterations 
each are presented, with binary result arrays converted to real job 
paths. For example, the array [[[1], [1, 0], [1, 0], [1, 0], [1]]] becomes 
S-M

1-M3-M5-D. The solution arrays are shortened in the ‘Qubit 
Path’ column, with vertical bars separating jobs material flows. 

Simulation of two material flows
The first simulation experiments the simulation of two material 
flows with multiple optimal path is the least performance intensive. 
Accurate results could be achieved in modest simulation times with 
‘maxiter’ and ‘reps’ set to 10, and ‘shots’ set to 4.000 (Table 1).

An ‘X’ in the ‘Real MMS Path’ column indicates a false output due 
to a constraint violation, penalizing the cost function. However, 
such invalid results can still yield optimal or near-optimal outcomes. 
For instance, changing the false output in iteration ten of Table 
1 to machine 5 results in a valid optimal path with a cost of 11, 
consistent with tables. This error is likely due to quantum noise 
or balanced superposition states. Further research is needed for a 
post-processing scheme to correct such errors automatically. In the 
second, more computationally intensive simulation, one optimal 
path was defined by raising other paths’ costs. Despite challenges 
minimizing the QUBO, doubling the ‘shots’ parameter every ten 
iterations led to four optimal results at 32,000 shots (Table 2).

Simulation of three material flows
The last and most performance intensive simulation experiment 
deals with finding the optimal path for all three jobs so that none 
of the material flows are present at the same machine at the same 
time tick. As before, ‘maxiter’ and ‘reps’ are set to 10. To locate 
a best-case optimization cost of 18 at least once, the parameter 
‘shots’ had to be raised to 128.000. Table 3 enlists the results of the 
simulation run. 

mathematical QUBO problem formulation 𝐻 that includes every 
possible flow scenario in a binary cost polynomial [19].
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The first constraint 1H  iterates through every material flow 𝑚 
at every time tick 𝑡 to ensure that only one vertex 𝑣 is active at 
one respective time tick. If this is not the case, and there of two 
machines are scheduled simultaneously for the execution of one 
work step, a penalty weight 𝑃 is accumulated to the total cost.

2
1 2

1 , ,
0 0

1 ....................................(3)
t

M T

c m t v
m t v V

H PH X
− −

= = ∈

 
= = − 

 
∑∑ ∑

The second constraint 2H  iterates through every vertex in the sliced 
graph and checks if the limit of feasible material flows 𝑚 per vertex 
𝑣 is not exceeded. Therefore, ( , )D t v  acts as a function that counts 
the active material flows on each vertex and checks for collisions. 
If and only if, the vertex count is zero or one, the result is valid. 
Otherwise, the result is invalid and penalized by 𝑃. The penalty 
weight 𝑃 is equal for Equations (3) and (4). It is chosen such that 
it is much greater than the cost weight that is processed by cH  [25].
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The objective of a simulation is the minimization of the originating 
polynomial 𝐻. For simulating three material flows in this project’s 
model, 24 qubits have to be active - 8 qubits per material flow. This 
is derivable from the array in Figure 1.

To process the given combinatorial optimization problem of 
an MMS, it is implemented via Python and the help of Qiskit’s 
quantum libraries IBM’s QasmSimulator is chosen as backend for 
all simulations since no real circuit-based quantum hardware that 
meets the problem’s criteria has been freely accessible for testing 
reasons in the course of this project. Further, the Constrained 
Optimization by Linear Approximation (COBYLA) optimizer has 
been determined to process the problem most efficiently out of five 
tested optimizers and has therefore been selected primarily for all 
simulated use cases [27].

RESULTS AND DISCUSSISON

Three material flow use cases were defined and simulated. The first 

Table 1: Results for two jobs and multiple optimal paths [27].

S. No Optimal cost Qubit path Real MMS path Validity Simulation time

1 11 1-10-01-01-1 | 1-10-10-01-1 S-M
1-M3-M5-D | S-M2-M1-M4-D ✓ 31,13 s

2 11 1-10-10-10-1 | 1-10-10-10-1 S-M1
-M

3
-M

5
-D | S-M

2
-M

1
-M

4
-D ✓ 29,79 s

3 11 1-10-10-10-1 | 1-10-10-10-1 S-M1-M3-M5-D | S-M2-M1-M4-D ✓ 30,00 s
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4 11 1-10-10-10-1 | 1-10-10-10-1 S-M1-M3-M5-D | S-M2-M1-M4-D ✓ 30,52 s

5 11 1-10-10-01-1 | 1-10-10-01-1 S-M1-M3-M6-D | S-M2-M1-M5-D ✓ 30,90 s

6 12 1-10-01-01-1 | 1-01-01-01-1 S-M1-M4-M6-D | S-M3-M6-M5-D ✓ 30,47 s

7 13 1-10-01-01-1 | 1-01-10-01-1 S-M1-M4-M6-D | S-M3-M1-M5-D ✓ 31,19 s

8 14 1-10-01-01-1 | 1-01-10-10-1 S-M1-M4-M6-D | S-M3-M1-M4-D ✓ 29,94 s

9 15 1-10-01-10-1 | 1-01-10-10-1 S-M1-M4-M5-D | S-M3-M1-M4-D ✓ 31,47 s

10 207 1-10-01-01-1 | 1-10-10-00-1 S-M1-M4-M6-D | S-M2-M1-X-D X 30,84 s

Table 2: Results for two jobs and a single optimal path [27].

S. No Optimal cost Qubit path Real MMS path Validity Simulation time

1 11 1-10-10-10-1 | 1-10-10-10-1 S-M1-M3-M5-D | S-M2-M1-M4-D ✓ 161,44 s

2 11 1-10-10-10-1 | 1-10-10-10-1 S-M1-M3-M5-D | S-M2-M1-M4-D ✓ 161,21 s

3 11 1-10-10-10-1 | 1-10-10-10-1 S-M1
-M

3
-M

5
-D | S-M

2
-M

1
-M

4
-D ✓ 155,75 s

4 11 1-10-10-10-1 | 1-10-10-10-1 S-M
1
-M

3
-M

5
-D | S-M

2
-M

1
-M

4
-D ✓ 157,04 s

5 18 1-10-01-10-1 | 1-10-10-10-1 S-M
1-M4-M5-D | S-M2-M1-M4-D ✓ 158,73 s

6 22 1-10-10-10-1 | 1-10-01-10-1 S-M
1
-M

3
-M

5
-D | S-M

2
-M

6
-M

4
-D ✓ 156,18 s

7 23 1-10-10-10-1 | 1-10-01-10-1 S-M
1
-M

3
-M

5
-D | S-M

2
-M

6
-M

4
-D ✓ 158,88 s

8 23 1-10-10-10-1 | 1-10-01-10-1 S-M
1
-M

3
-M

5
-D | S-M

2
-M

6
-M

4
-D ✓ 159,02 s

9 23 1-10-10-01-1 | 1-10-10-10-1 S-M
1-M3-M6-D | S-M2-M1-M4-D ✓ 158,73 s

10 24 1-10-01-01-1 | 1-10-10-10-1 S-M1-M4-M6-D | S-M2-M1-M4-D ✓ 159,08 s

Table 3: Results for three jobs and multiple optimal paths [27].

S. No Optimal cost Qubit path Real MMS path Validity Simulation time

1 18 1-01-01-01-1 | 1-01-01-01-1 | 1-10-10-10-1 S-M
2
-M

4
-M

6
-D | S-M

3
-M

6
-M

5
-D|S-M

1
-M

2
-M

3
-D ✓ 1792.83 s

2 18 1-10-10-10-1 | 1-10-10-10-1 | 1-01-01-01-1 S-M
1-M3-M5-D | S-M2-M1-M4-D |S-M4-M5-M6-D ✓ 1799.09 s

3 20 1-01-01-01-1 | 1-01-10-10-1 | 1-10-10-10-1 S-M2-M4-M6-D | S-M3-M1-M4-D |S-M1-M2-M3-D ✓ 1831.98 s

4 20 1-01-10-01-1 | 1-01-01-01-1 | 1-10-10-10-1 S-M
2
-M

3
-M

6
-D | S-M

3
-M

6
-M

5
-D |S-M

1
-M

2
-M

3
-D ✓ 1829.45 s

5 22 1-10-01-10-1 | 1-10-10-10-1 | 1-01-10-10-1 S-M
1
-M

4
-M

5
-D | S-M

2
-M

1
-M

4
-D |S-M

4
-M

2
-M

3
-D ✓ 1823.18 s

6 22 1-10-01-10-1 | 1-01-01-10-1 | 1-01-01-01-1 S-M
1-M4-M5-D | S-M3-M6-M4-D |S-M4-M5-M6-D ✓ 1824.27 s

7 215 1-10-10-00-1 | 1-10-01-01-1 | 1-01-01-01-1 S-M1
-M

3
-X-D | S-M

2
-M

6
-M

5
-D |S-M

4
-M

5
-M

6
-D ✓ 1851.55 s

8 215 1-01-01-01-1 | 1-01-01-01-1 | 1-01-10-00-1 S-M2
-M

4
-M

6
-D | S-M

3
-M

6
-M

5
-D |S-M

4
-M

2
-X-D  1854.33 s

9 215 1-10-10-01-1 | 1-10-01-01-1 | 1-00-01-10-1 S-M
1
-M

3
-M

6
-D | S-M

2
-M

6
-M

5
-D |S-X-M

5
-M

3
-D  1829.3 s

10 217 1-10-01-01-1 | 1-10-10-10-1 | 1-00-10-10-1 S-M
1
-M

4
-M

6
-D | S-M

2
-M

1
-M

4
-D |S-X-M

2
-M

3
-D  1825.21 s
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in Quantum Computing and Emerging Business Technologies 
(TQCEBT). IEEE. 2022:1-6. 

9. Klar M, Schworm P, Wu X, Glatt M, Aurich JC. Quantum annealing 
based factory layout planning. Manuf Lett. 2022;32:59-62.

10. Othmani I, LaDue M, Mavissen M. Exploring quantum computing 
use cases for logistics: Logistics is more complex than ever. IBM. 2022.

11. Sotelo R. Applications of quantum computing to optimization. In 2021 
IEEE CHILEAN Conference on Electrical, Electronics Engineering, 
Information and Communication Technologies (CHILECON). 
2021;1-5. 

12. Gambetta J. Quantum-centric supercomputing: The next wave of 
computing. IBM. 2022.

13. Preskill J. Quantum computing in the NISQ era and beyond. 
Quantum. 2018;2:79. 

14. Gibney E. Quantum gold rush: The private funding pouring into 
quantum start-ups. Nature. 2019;574(7776):22-24. 

15. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, et 
al. Variational quantum algorithms. Nat Rev Phys. 2021;3(9):625-644. 

16. Farhi E, Goldstone J, Gutmann S. A quantum approximate 
optimization algorithm. arXiv preprint arXiv:1411.4028. 2014. 

17. Bentley CD, Marsh S, Carvalho AR, Kilby P, Biercuk MJ. 
Quantum computing for transport optimization. arXiv preprint 
arXiv:2206.07313. 2022. 

18. Harwood S, Gambella C, Trenev D, Simonetto A, Bernal D, Greenberg 
D. Formulating and solving routing problems on quantum computers. 
IEEE Trans Quantum Eng. 2021;2:1-7. 

19. Jaroszewski D, Klos F, Sturm B. Ising formulations of routing 
optimization problems. arXiv preprint arXiv:2012.05022. 2020. 

20. Yarkoni S, Huck A, Schülldorf H, Speitkamp B, Tabrizi MS, Leib 
M, et al. Solving the shipment rerouting problem with quantum 
optimization techniques. In Computational Logistics: 12th 
International Conference, ICCL 2021, Enschede, The Netherlands, 
September 27-29, 2021. Proceedings 12. 2021;502-517. 

21. Papalitsas C, Andronikos T, Giannakis K, Theocharopoulou G, 
Fanarioti S. A QUBO model for the traveling salesman problem with 
time windows. Algorithms. 2019;12(11):224. 

22. Glover F, Kochenberger G, Du Y. Quantum Bridge Analytics I: 
A tutorial on formulating and using QUBO models. Springer. 
2019;17(4):335-371. 

23. Klos F. Routing/PlanQK. 2020.

24. Madadi L. (2021). Application of quantum computing to use cases 
from travel & transport industries. 2021.

25. Denkena B, Schinkel F, Pirnay J, Wilmsmeier S. Quantum algorithms 
for process parallel flexible job shop scheduling. CIRP J Manuf Sci 
Technol. 2021;33:100-114.

26. Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ, Love PJ, et al. 
A variational eigenvalue solver on a photonic quantum processor. Nat 
commun. 2014;5(1):4213.

27. Pfister R, Schubert G, Kröll M. Transfer of logistics optimizations 
to material flow resource optimizations using quantum computing. 
Procedia Comput Sci. 2024;232:32-42. 

As it is the case in Table 1, some of the invalid results can be post-
processed to reach validity. By changing the parameters ‘maxiter’ 
and ‘reps’ to higher values, no superior results could have been 
achieved. Increasing parameter values make the simulation more 
time consuming and hence, inefficient in all simulated use cases. 
For that reason, the conceptualized model should be simulated and 
tested on real quantum hardware in future research to get better 
results in a matter of milliseconds [27].

CONCLUSION

This study investigates the application of quantum technologies 
in logistics, focusing on optimizing material flow resources. By 
transferring a Vehicle Routing Problem (VRP) to a Flexible Job Shop 
Scheduling Problem (FJSP) within a Manufacturing Management 
System (MMS), the study identified transferrable problem variables 
and disruption factors. Simulations of a small-scale FJSP confirmed 
the feasibility of using quantum systems, though the model is 
limited and misses some practical variables. Optimal results were 
achieved using QAOA with a quantum emulator and COBYLA 
optimizer on QUBO problem sizes of 16 and 24 qubits. The 
proposed theoretical model, while not applicable to real-world 
conditions, suggests potential benefits in complex production 
environments. Future research should apply the approach to 
actual material flow models, integrating parameters like capacity 
utilization and workstation availability. Further investigation 
is needed for effective control strategies, advanced time-based 
criteria, and error correction mechanisms. Additionally, evaluating 
the problem formulation for quantum hardware feasibility and 
exploring various quantum algorithms is essential. Progress in 
large-scale, high-performance, low-noise quantum technologies is 
crucial for advancing this research and addressing extensive real-
world optimization problems [27].
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