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ABSTRACT
The U.S. Holstein cattle have unprecedentedly large samples for genomic evaluation with genotypes of Single

Nucleotide Polymorphism (SNP) markers and phenotypic observations of dairy quantitative traits. Such large samples

provided unprecedented opportunities for the discovery of genetic variants and mechanisms affecting quantitative

traits in Holstein cattle. Recent studies using the Holstein large samples on finding genetic variants affecting

quantitative traits included a fat percentage study and two studies on reproductive traits. The fat percentage study

confirmed that a chromosome region interacted with all chromosomes and the reproductive studies detected sharply

negative homozygous recessive genotypes that were recommended for heifer culling. These novel findings provided

examples showing the power of large-sample genomic mining for quantitative traits.
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ABOUT THE STUDY
The U.S. Holstein cattle have the largest samples of genomic 
evaluation data in domestic animals in the world. By March 

2024, the U.S. Holstein breed had 7,147,052 SNP genotyped  

cattle with an increase about one million genotyped cattle a year 
since 2020 (Figure 1a). By the end of 2023, the number of 
genotyped Holstein cows with phenotypic observations exceeded 
1.6 million with an annual increase of approximately 200,000 

cows per year since 2016 (Figure 1b).

Figure 1: Growth of the genomic evaluation data of U.S. Holstein cattle. (a) Number of SNP genotyped Holstein cattle January 
2009 through January 2024; (b) Number of SNP genotyped Holstein cows with phenotypic observations on milk yield in calving years 
2007-2021 (61,764 cows calved in 2022 not shown due to incomplete calving year). Data source: Council on Dairy Cattle Breeding 
(CDCB).
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January 2009 through January 2024; (b) Number of SNP
genotyped Holstein cows with phenotypic observations on milk
yield in calving years 2007-2021 (61,764 cows calved in 2022 not
shown due to incomplete calving year). Data source: Council on
Dairy Cattle Breeding (CDCB).

Such large samples provided unprecedented statistical power for
identifying genetic mechanism affecting quantitative using the
approach of Genome-Wide Association Study (GWAS),
particularly for detecting complex genetic mechanism that may
include gene interaction effects commonly referred to as
epistasis and multiple genetic factors with small effects. This is
among the most difficult genetic areas due to difficulties to

discover and the need of large samples to detect many small

effects.

The epistasis tests of A × A epistasis effects for fat

The epistasis GWAS for fat percentage using 1,231,898 first

lactation cows and 75,198 SNPs [1] had over 2.827 billion SNP
pairs. For each SNP pair, four tests could be done, A×A, A×D,

D×A and D×D epistasis effects, where ‘A’ stands for additive

effect and ‘D’ stands for dominance effect. However, for
computing feasibility and the purpose of validating inter-
chromosome A × A epistasis effects with a chromosome14

region, only inter-chromosome SNP pairs between chromosome
14 and the remaining chromosomes (nearly 199 million pairs)
were tested for A × A epistasis effects. Many of the allelic
combinations of the SNP pairs had small effects and low
frequencies, but the large sample detected 2763 pairs of
significant inter-chromosome A × A effects with high statistical
confidence from the nearly 199 million tests, confirming that
one piece of chromosome 14 interacted with all chromosomes
for fat percentage. This result was first discovered using 294,079
cows [2], and was the only such a result in any species. Given the
uniqueness of this discovery, additional confirmation should be
needed. The study using 1.2 million cows provided high-
confidence confirmation of this unique discovery and in the
meantime detected many new inter-chromosome A × A epistasis
effects.

Detection of rare but sharply negative recessive
genotypes for reproductive traits

A Holstein GWAS on three fertility traits using over one million
cows [3], and another GWAS on age at first calving using over
800,000 cows [4], also provided examples of the power of large-
sample discovery of genetic factors for quantitative traits. These
studies discovered some low-frequency but sharply negative
recessive genotypes for the four reproduction traits and most of
these recessive genotypes had not been detected using sample
sizes of 186,188–269,158 Holstein cows that were already
unprecedentedly large samples in 2019. The sharply negative
recessive genotypes accounted for about 2% of Holstein cow
population and were recommended for culling heifers carrying
any of the recessive genotype so that farmers can avoid economic

losses for raising those heifers to reproductive age to find the
reproductive problems of those heifers.

Computing challenges for genome-wide epistasis 
tests

The GWAS for inter-chromosome A × A between chromosome
14 and other chromosomes was a computing change whereas the
GWAS for additive and dominance effects of the four
reproductive traits was not a computing challenge for the Atlas
computing system of USDA/ARS we used. The analysis was
performed on Atlas ‘big memory’ partition with 1,546.595 GB
of available RAM. For computing efficiency, intra-chromosome
SNP pairs were skipped, and only inter-chromosome SNP pairs
between chromosome 14 and the other 30 chromosomes were
tested, where the pseudo-autosomal and nonrecombining
regions of the X chromosome were treated as two chromosomes.
Each pair of chromosomes was tested separately and used about
195.5 GB RAM and 3 hours to finish. All 30 runs took about
90 hours to finish. The Atlas system could only analyze 500,000
individuals for testing all 2.827 billion SNP pairs for A × A, A ×
D, D × A and D × D epistasis effects per SNP pair even when
the ‘big memory’ partition was used. Since the Atlas system was
shared by many users and the ‘big memory’ partition was not
always available, pairwise epistasis testing was a computing
challenge.

The  road  “from  phenotype  to  genotype and back 
from genotype to phenotype”

At the 2022 and 2023 NSF/NIH EDGE awardee meetings, a
theme of discussion was “from phenotype to genotype and back
from genotype to phenotype”, to be short named “genotype-
phenotype round trip”. The combined approach of GWAS and
Genomic Prediction (GP) using large Holstein samples provides
a unique association-based non-laboratory approach for the
genotype-phenotype round trip (Figure 2).

Figure 2: Genotype-phenotype round trip using the combined 

approach of GWAS and GP.
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The GWAS approach can identify the locations and sizes of SNP 
effects as well as gene actions as shown by our examples of

Holstein GWAS. Results of GWAS can be used for eliminating 

damaging recessive effects and provide targets for laboratory 

research such as gene editing. The GWAS approach investigates 

the path “from phenotype to genotype”.

The GP approach involves both paths “form genotype to 
phenotype” and “from phenotype to genotype”. GP predicts 
genetic and/or phenotypic values typically using genome-wide 
SNPs and has rapidly become a routine approach for genomic 
evaluation in many livestock and crop species since 2007.

An advantage  of GP is the availability of an objective judgement 
for  the  performance  of  a prediction  model through validation 
studies: the prediction model with the highest prediction accuracy 
is the best prediction model. Through validation studies, we have 
reported several examples of improved accuracy of GP using 
haplotype and epistasis effects in human, swine, and Holstein 
cows [5-7], as examples of the GP path “from genotype to 
phenotype”. The validation studies also generated interesting new 
genetic knowledge, providing examples of the GP path “from 
phenotype to genotype”. These examples included haplotypes of 
coding genes that improved the prediction accuracy [5,6], 
haplotypes of noncoding genes that were strikingly more accuracy 
than SNPs in those genes [5], and confounding between intra-
chromosome A × A effects and additive effects [7]. In addition to 
interesting genetic knowledge from validation studies, the GP 
model can provide heritability estimates for any SNP, haplotype 
blocks or chromosome regions, providing genetic knowledge not 
commonly available from GWAS. For human High-Density 
Lipoproteins (HDL), the CETP gene  was  widely  confirmed to 
have the most significant SNP effect by multiple human GWAS 
reports (https://www.ebi.ac.uk/gwas/). Our GP research showed            
CETP also had the highest SNP heritability and the highest 
haplotype heritability when each haplotype block was 50 Kb in 
size [6].

However, CETP no longer had the highest haplotype heritability 
when the size of the haplotype block increased to 150 Kb or 
when each gene was treated as a haplotype block. In these cases, 
the ATRNL1  gene  had  the  highest haplotype heritability,  and 
many other genes also had higher haplotype heritability than 
that of CETP (Figure 3). 

The GP example showed that GP can be a valuable  approach for  
researching genotype-phenotype round trip”. The  main challenge 
of  the  GP  approach  is  the computing  difficulty: GP can be far 
more demanding computationally than GWAS. Given computing 
power the GP approach using large samples is expected to identify 
effect types relevant to prediction accuracy and exclude effect 
types without contribution to prediction accuracy.
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A   golden   era    for   genomics   data   mining   for

quantitative traits  in   livestock  species   

The large-sample Holstein GWAS showed the unique 
opportunities for the discovery of genetic factors and mechanisms 
affecting quantitative traits. Such large samples could have been 
unimaginable only a decade ago. Although U.S. Holstein cattle 
have the largest sample sizes of genomic evaluation data, other 
livestock species with routing genomic evaluations including Jersey 
cattle, beef cattle, swine, and chicken are also accumulating 
genomic evaluation data and may soon have sample sizes 
comparable to the current Holstein sample sizes. The different 
species have many different quantitative traits and even the same 
trait of two different species may involve different genetic 
mechanisms. Many new discoveries of genetic factors and 
mechanisms affecting quantitative traits of those livestock species 
can be expected from large-sample analysis of the rapidly growing 
genomic evaluation data. The coming decade for livestock species 
with routine genomic evaluations is a golden era with 
unprecedented opportunities for the genetic research of 
quantitative traits.
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Figure 3: Genomic haplotype heritability estimates of two 
haplotype blocking methods for High Density Lipoproteins 
(HDL). (a) The ATRNL1 gene had the highest haplotype 
heritability for 150Kb haplotype blocks; (b) The ATRNL1 
gene had the highest haplotype heritability for gene-based 
haplotype blocks, where ATRNL1 was divided into two 
blocks.
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