Comparison of Measurements made on Plaster and CBCT-Scanned Models

Jared T. Lee¹, Thomas J. Cangialosi²

¹Private Practice of Orthodontics, Santa Paula, California. ²Professor and Chair, Department of Orthodontics Rutgers School of Dental Medicine USA.

Abstract

Background: Digital models derived from CBCT scans have the potential to be as acceptable to patients and practitioners as other forms of digital dental models. The purpose of this study is to compare measurements made on traditional plaster models with measurements made from digital renderings of CBCT scans of the same plaster models.

Materials and Methods: Ten mandibular plaster models were obtained and 3-dimensional digital models were created from CBCT scans of the models. The casts that were used for direct measurement were the same casts that were scanned using CBCT. Three observers conducted 33 measurements on each plaster model and each digital model. Intra and inter-examiner measurements were compared statistically using the Intraclass Correlation Coefficient and a paired *t*-test.

Results: Statistically significant though not clinically relevant differences were detected. Standard deviations for most measurements were less than 1.0 mm, with 20 of the 33 measurements at 0.05 mm. or less.

Conclusions: The benefits of a digital model rendered from a CBCT scan of a plaster cast include good soft-tissue reproduction, no radiation exposure for the patient, no scatter on the image from metal dental restorations, no need to purchase another scanning method for facilities that have already obtained CBCT machines, and the ability to digitally archive any already existing plaster dental model. Clinical accuracy ensures that 3-dimensional digital models rendered from CBCT scans of plaster casts are an appropriate alternative to traditional plaster models.

Key Words: CBCT, Digital models, Comparison, Plaster models

Introduction

Maxillary and mandibular dental arch space analysis is essential in comprehensive clinical orthodontic evaluation. The analysis includes tooth dimensions, intra-arch widths and adequate alveolar volume corresponding to the present or planned tooth volume [1]. Not only should measurement values be recorded before and after treatment, but it is often desirable to have a 3dimensional likeness of a dentition for comparison and evaluation [2]. Plaster models of the dentition have been used traditionally for orthodontic evaluation [3] and are considered the "gold-standard" for arch space analysis [4].

Some of the advantages of plaster dental models include accuracy, a high level of physical permanence over time and a relatively low production cost. However, plaster models have disadvantages, including breakage, storage costs and weight. These disadvantages are significant. Photocopies [5], microscopes [6], and holographs [7] have been suggested as substitutes for plaster models of the dentition, however none of these modalities has been well accepted.

However, support for the concept of computer-rendered digital impressions is promising [8]. Several studies have established that commercial optically-scanned computerrendered digital models, such as Orthocad and Emodel, as clinically acceptable [9-11]. Others have stated that models should be taken directly from Cone Beam Computerized Tomography (CBCT) scans, citing ease, accuracy and patient comfort [12]. However, radiation exposure should not be discounted and should be kept as low as possible, especially for the adolescent patients that often make up a significant portion of the individuals undergoing active orthodontic treatment [13-15]. With several competing modalities currently available to the orthodontic practitioner, some authors have suggested that the profession should determine the best alternative to traditional plaster models and have dramatically called for a showdown [16]. Before drawing any conclusions about the best method to replace plaster models, computer-rendered digital models made from CBCT scans of traditional plaster orthodontic model should be considered. Digital models derived from CBCT scans have the potential to be as acceptable to patients and practitioners as other forms of digital dental models. The purpose of this study is to statistically compare observer measurements of plaster models with measurements from digital renderings of CBCT scans of the plaster models.

Materials and Methods

Ten mandibular plaster models were selected from the archives of orthodontic models from the Department of Orthodontics at the Columbia University College of Dental Medicine. The models were selected based on the following criteria

• Type-III stone orthodontic models, soaped and polished

• A complete dentition of 14 teeth from 2nd molar to 2nd molar

• No blebs or voids on the digital or plaster models

• No fractures on the teeth of the plaster models

Three licensed dentists were selected as observers for the study. A brief set of instructions was given to each and they were allowed as much time as they desired to familiarize themselves with the models and equipment before recording values for the measurements.

Digital calipers (Neiko 6" Digital LCD Vernier Caliper/ Micrometer, Zhejiang Kangle Group, Wenzhou City, Zhejiang,

Corresponding author: Thomas J. Cangialosi, DDS, Professor and Chair, Department of Orthodontics Rutgers University, School of Dental Medicine 110 Bergen Street, Newark, New Jersey, US; Tel: 973-972-4729; Fax: 973-972-0526; e-mail: cangiatj@sdm.rutgers.edu

China. (*Figure 1*) were used to make measurements. On each cast to the nearest 0.01 millimeter. The observers measured the largest mesio-distal dimension (*Figure 2*), the largest bucco-lingual dimension of each tooth and the distances from mesio-buccal cusp tip to contralateral cusp tip of the 2nd and 1st molars, the buccal cusp tip to contralateral cusp tip of the2nd and 1st premolars, and the cusp tip to contralateral cusp tip of the canines. A total of 33 distinct measurements were recorded.

Each observer then made the same measurements on computer-rendered digital models of the same casts. The digital models were created by using i-CAT Classic CBCT digital scanner (Imaging Sciences International, Hatlefield, PA) at 60kVP, with a scan time of 29.6 seconds and a 0.20mm slice thickness. The Dicom file was viewed and 3-dimensional model rendered using Anatomage Invivo5(Anatomage, San Jose, CA) on a Dell XPS 720 with an NVIDIA GeForce8800 graphics card with a 19"monitor with 1280x1024 pixels (Dell, Dallas, TX). The data was recorded on Microsoft Excel 2004 (Microsoft Corporation, Redmond, WA) and then statistical analysis was performed with SPSS Version 11.5(SPSS, Chicago, IL).

The casts that were used for direct measurement were the same casts that were scanned using CBCT. Distortion

Figure 1. Plaster cast measured with Digital calipers (Neiko 6" Digital LCD Vernier Caliper/ Micrometer, Zhejiang Kangle Group, Wenzhou City, Zhejiang, China).

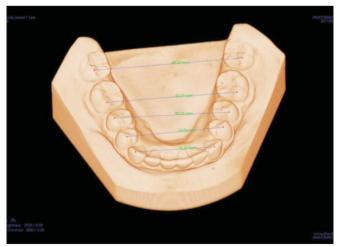


Figure 2. CBCT scan rendering of model.

and variation among alginate impressions was eliminated. Variance of measurements between the plaster and digital renderings is therefore attributable to either operator error or an inherent distortion of the CBCT-rendered images. The use of the same models for direct measurement and for creation of the test images is a major advantage in this project design. **Statistical Analysis**

The data set was evaluated first for descriptive statistics (*Tables 1-3*), then for Normality using the Shapiro-Wilks Test (*Tables 4-6*). Homogeneity of Variance was evaluated using the Levene Test (*Tables 7-9*). The Intraclass Correlation Coefficient was employed to test the agreement between the three examiners in the study (*Tables10-11*) [17]. Finally, a paired *t*-test was used to compare the measurements form the digital renderings to the "gold standard" of the plaster models (*Tables 12-14*).

Results

Standard deviations for most variables tested were less than 1mm.with 20 of the 33 deviations 0.5 mm or less. Mesiodistal and bucco-lingual measurement standard deviations ranged from 0.90 mm (bucco-lingual of right central incisor) to 0.29 mm (mesio-distal of mandibular right first premolar). Average measurement comparison varied most for the series of cusp to cusp measurements, with a standard deviation range of 1.3 to 3.13 mm.

The Intraclass Correlation Coefficient results show that intra-examiner CBCT measurement correlation was 0.681 (bucco-lingual of left 1st premolar) to 0.991 (mesio-buccal cusp of right 1st molar to mesio-buccal cusp of left 1st molar). The intra-examiner correlation for plaster cast measurements varied from 0.679 (mesio-distal of left canine) to 0.993 (mesio-buccal cusp tip of right 1st molar to mesio-buccal cusp tip of left 1st molar). However, the correlation of the mesiodistal left 1st premolar was 0.227.

Inter-examiner CBCT correlation ranged from 0.386

Table 1. Descriptive Statistics: Cusp to Cusp in millimeters

Tuble 1. Descriptive statistics. Cusp to Cusp in mitumeters.					
	Ν	Minimum	Maximum	Mean	Std. Deviation
2nd Molars	60	48.26	57.42	53.06	3.14
1st Molars	60	42.62	51.08	47.31	2.46
2nd Pre molars	60	36.53	45.60	41.52	2.09
1st Pre molars	60	31.78	39.16	35.43	1.61
Canines	60	25.17	31.14	27.51	1.31

Table 2.	Descriptive	Statistics:	Facial t	o Lingual	in millimeters.

Table 2. Descriptive statistics: Facial to Lingual in mitimeters.					
	Ν	Minimum	Maximum	Mean	Std. Deviation
Left 2nd molar	60	7.49	11.82	10.58	0.70
Left 1st molar	60	9.95	12.39	11.39	0.56
Left 2nd premolar	60	6.53	8.36	7040	0.37
Left 1st premolar	60	5.83	8.15	7.35	0.43
Left canine	60	6.10	7.94	7.19	0.40
Left lateral incisor	60	4.92	7.12	6.03	0.44
Left central incisor	60	4.83	6.26	5.54	0.31
Right central incisor	60	4.95	6.82	5.50	0.33
Right lateral incisor	60	4.65	7.54	6.13	0.46
Right canine	60	6.22	7.99	7.14	0.37
Right 1st premolar	60	6.34	8.53	7.30	0.50
Right 2nd premolar	60	6.98	8.32	7.55	0.30
Right 1st molar	60	10.29	12.65	11.33	0.53
Right 2nd molar	60	9.58	11.97	10.68	0.67

	N	Minimum	Maximum	Mean	Std. Deviation
Left 2nd molar	60	7.49	11.82	10.58	0.70
Left 1st molar	60	9.95	12.39	11.39	0.56
Left 2nd premolar	60	6.53	8.36	7.40	0.37
Left 1st premolar	60	5.83	8.15	7.35	0.43
Left canine	60	6.10	7.94	7.19	0.40
Left lateral incisor	60	4.92	7.12	6.03	0.44
Left central incisor	60	4.83	6.26	5.54	0.31
Right central incisor	60	4.95	6.82	5.50	0.33
Right lateral incisor	60	4.65	7.54	6.13	0.46
Right canine	60	6.22	7.99	7.14	0.37
Right 1st premolar	60	6.34	8.53	7.30	0.50
Right 2nd premolar	60	6.98	8.32	7.55	0.30
Right 1st molar	60	10.29	12.65	11.33	0.53
Right 2nd molar	60	9.58	11.97	10.68	0.67

 Table 3. Descriptive Statistics: Mesial to Distal in millimeters.

Table 4. Shapiro-Wilk Tests of Normality: Cusp to Cusp.

	Modality	Statistic	df	Sig.
2nd Molars	In vivo	0.854	30	0.001
2110 10101015	Plaster	0.865	30	0.001
1st Molars	In vivo	0.917	30	0.022
1 St Molars	Plaster	0.924	30	0.034
2nd	In vivo	0.967	30	0.460
Premolars	Plaster	0.965	30	0.408
1st	In vivo	0.993	30	0.999
Premolars	Plaster	0.952	30	0.196
Canines	In vivo	0.965	30	0.404
Canines	Plaster	0.907	30	0.013

Table 5	Shapiro-Wilk	Tests of Nor	mality Facio	al to Lingual
Tuble 5.	. Snupir0-wiik	iesis oj nor	manny. Facu	ii io Linguui.

	Modality	Statistic	df	Sig
Left 2 nd molar	In vivo	0.933	30	0.058
Lett 2 nd molar	Plaster	0.914	30	0.019
T . 64 1st	In vivo	0.947	30	0.137
Left 1 st molar	Plaster	0.939	30	0.084
Left 2 nd premolar	In vivo	0.883	30	0.003
Lett 2 ²²⁰ premotar	Plaster	0.892	30	0.005
Left 1 st premolar	In vivo	0.946	30	0.132
Left 1 th premolar	Plaster	0.972	30	0.595
Left canine	In vivo	0.980	30	0.834
Lett canine	Plaster	0.883	30	0.003
Left lateral incisor	In vivo	0.863	30	0.001
Left later at mersor	Plaster	0.948	30	0.152
Left central incisor	In vivo	0.925	30	0.035
	Plaster	0.884	30	0.004
Right central incisor	In vivo	0.938	30	0.079
Right central incisor	Plaster	0.974	30	0.648
Right lateral incisor	In vivo	0.961	30	0.321
	Plaster	0.971	30	0.565
D:14 :	In vivo	0.949	30	0.155
Right canine	Plaster	0.931	30	0.051
D:-L4 1st	In vivo	0.967	30	0.471
Right 1 st premolar	Plaster	0.972	30	0.603
Dight 2nd promolor	In vivo	0.985	30	0.929
Right 2 nd premolar	Plaster	0.954	30	0.216
Right 1 st molar	In vivo	0.898	30	0.008
Kight 1° molar	Plaster	0.949	30	0.158
Right 2nd molar	In vivo	0.954	30	0.218
Right 2 motar	Plaster	0.985	30	0.945

(bucco-lingual of left central incisor) to 0.970 (mesio-buccal cusp tip of right 1st molar to mesio-buccalcusp tip of left 1st molar). The inter-examiner correlation for the plaster models

	Modality	Statistic	df	Sig
Left 2 nd molar	In vivo	0.968	30	0.476
Lett 2 nd molar	Plaster	0.772	30	0.000
Left 1 st molar	In vivo	0.970	30	0.553
	Plaster	0.933	30	0.060
Left 2 nd premolar	In vivo	0.981	30	0.861
	Plaster	0.944	30	0.113
T & 1st I	In vivo	0.908	30	0.014
Left 1 st premolar	Plaster	0.887	30	0.004
I	In vivo	0.950	30	0.164
Left canine	Plaster	0.976	30	0.704
Left lateral incisor	In vivo	0.982	30	0.885
Lett lateral incisor	Plaster	0.962	30	0.342
Left central incisor	In vivo	0.985	30	0.937
Lett central incisor	Plaster	0.960	30	0.309
Right central incisor	In vivo	0.911	30	0.016
Right central incisor	Plaster	0.957	30	0.253
Disht latanal in siana	In vivo	0.944	30	0.119
Right lateral incisor	Plaster	0.961	30	0.333
D .14	In vivo	0.974	30	0.649
Right canine	Plaster	0.977	30	0.744
D' L (1st L	In vivo	0.973	30	0.618
Right 1 st premolar	Plaster	0.973	30	0.63
D: 14 and 1	In vivo	0.952	30	0.187
Right 2 nd premolar	Plaster	0.960	30	0.302
D:-L4 1st L	In vivo	0.982	30	0.866
Right 1 st molar	Plaster	0.983	30	0.896
D:-L4 2nd l	In vivo	0.931	30	0.053
Right 2 nd molar	Plaster	0.978	30	0.760

Table 7. Levene's Test (Equal Variance Assumed): Cusp to Cusp.

	F	Sig
Left 2 nd molar	1.236	0.281
Left 1 st molar	0.611	0.445
Left 2 nd premolar	0.018	0.895
Left 1 st premolar	1.066	0.316
Left canine	0.425	0.523
Left lateral incisor	15.040	0.001
Left central incisor	3.420	0.081
Right central incisor	1.528	0.232
Right lateral incisor	3.776	0.068
Right canine	0.321	0.578
Right 1 st pre molar	0.931	0.347
Right 2 nd pre molar	0.556	0.466
Right 1 st molar	0.903	0.354
Right 2 nd molar	1.330	0.264

Table 8. Levene's Test (Equal Variance Assumed): Facia
--

	(-1	
	F	Sig
2 nd Molars	0.006	0.937
1 st Molars	0.104	0.751
2 nd Pre molars	0.036	0.851
1 st Pre molars	0.213	0.650
Canines	0.187	0.671

was0.409 (mesio-distal of left canine) to 0.972 (buccal cusp tip of right 2nd premolar to buccal cusp tip of left 2nd premolar). Another outlier, the mesio-distal dimension of the left 1st premolar had a correlation value of 0.181.

Hole 7. Devene stest (Equal val ance issumed). Mesial to Distat.	Table 9. Levene's Test	(EqualVarianceAssumed)):Mesial toDistal.
---	------------------------	------------------------	--------------------

note y. Devene stest (Equation interesting). The start to Distar.							
	F	Sig					
Left2 nd molar	0.951	0.342					
Left 1 st molar	2.458	0.134					
Left 2 nd pre molar	0.976	0.336					
Left 1 st pre molar	1.349	0.261					
Left canine	1.874	0.188					
Left lateral incisor	0.156	0.697					
Left central incisor	0.751	0.398					
Right central incisor	0.875	0.362					
Right lateral incisor	1.201	0.288					
Right canine	2.111	0.163					
Right 1 st pre molar	1.287	0.272					
Right 2 nd pre molar	0.014	0.909					
Right 1 st molar	0.150	0.703					
Right 2 nd molar	0.183	0.674					

Table 10. Intra-examiner Correlation.

	In vivo			Plaster			
	Range			Range			
	CC	Lower	Upper	CC	Lower	Upper	
Cusp to Cusp							
2nd Molars	0.987	0.963	0.997	0.993	0.980	0.998	
1st Molars	0.990	0.970	0.997	0.993	0.981	0.998	
2nd Premolars	0.978	0.937	0.994	0.990	0.971	0.997	
1st Premolars	0.973	0.921	0.993	0.979	0.939	0.994	
Canines	0.947	0.844	0.986	0.949	0.851	0.986	
Mesial to Distal							
Left 2 nd molar	0.957	0.873	0.988	0.866	0.608	0.964	
Left1 st molar	0.954	0.867	0.988	0.951	0.856	0.987	
Left2nd premolar	0.754	0.279	0.933	0.830	0.501	0.954	
Left1 st premolar	0.973	0.920	0.993	0.227	-1.265	0.791	
Left canine	0.938	0.818	0.983	0.679	0.059	0.913	
Left lateral incisor	0.865	0.604	0.964	0.942	0.830	0.984	
Leftcentralincisor	0.893	0.687	0.971	0.899	0.704	0.973	
Right central incisor	0.784	0.367	0.942	0.942	0.830	0.984	
Right lateral incisor	0.901	0.711	0.973	0.957	0.874	0.988	
Rightcanine	0.845	0.546	0.958	0.762	0.304	0.936	
Right 1st premolar	0.968	0.905	0.991	0.972	0.918	0.992	
Right2 nd premolar	0.844	0.544	0.958	0.841	0.533	0.957	
Right 1st molar	0.929	0.544	0.981	0.977	0.934	0.994	
Right2 nd molar	0.973	0.920	0.993	0.964	0.893	0.990	
Facial to Lingual							
Left2nd molar	0.893	0.686	0.971	0.772	0.333	0.939	
Left1 st molar	0.946	0.842	0.985	0.966	0.899	0.991	
Left 2 nd premolar	0.952	0.859	0.987	0.954	0.864	0.987	
Left 1st premolar	0.681	0.065	0.914	0.922	0.770	0.979	
Left canine	0.756	0.284	0.934	0.932	0.802	0.982	
Left lateral incisor	0.683	0.072	0.914	0.910	0.736	0.976	
Left central incisor	0.692	0.099	0.917	0.809	0.442	0.948	
Right central incisor	0.741	0.242	0.930	0.962	0.890	0.990	
Right lateral incisor	0.661	0.006	0.908	0.952	0.858	0.987	
Right canine	0.905	0.723	0.974	0.909	0.735	0.976	
Right 1st premolar	0.903	0.715	0.974	0.821	0.474	0.952	
Right 2 nd premolar	0.640	0.056	0.903	0.966	0.899	0.991	
Right 1st molar	0.892	0.685	0.971	0.930	0.794	0.981	
Right 2 nd molar	0.891	0.680	0.971	0.791	0.388	0.944	

It is important to determine the appropriate significance level when reporting paired *t*-test results. After a multiple comparison adjustment was performed, it was determined that for this study a p-value should be found significant

		In vivo		Plaster			
	Range			Range			
	CC	Lower	Upper	CC	Lower	Upper	
Cusp to Cusp							
2nd Molars	0.963	0.948	0.986	0.983	0.975	0.994	
1st Molars	0.970	0.958	0.990	0.981	0.979	0.982	
2nd Premolars	0.954	0.941	0.965	0.973	0.969	0.978	
1st Premolars	0.946	0.920	0.973	0.951	0.945	0.959	
Canines	0.876	0.845	0.911	0.865	0.802	0.952	
Mesial to Distal							
Left 2 nd molar	0.886	0.845	0.914	0.845	0.737	0.911	
Left1 st molar	0.905	0.873	0.955	0.878	0.873	0.887	
Left2nd premolar	0.523	0.408	0.738	0.636	0.524	0.735	
Left1 st premolar	0.928	0.891	0.983	0.181	-0.134	0.699	
Left canine	0.865	0.834	0.893	0.409	0.169	0.611	
Left lateral incisor	0.683	0.625	0.796	0.856	0.762	0.912	
Left central incisor	0.737	0.656	0.814	0.749	0.663	0.821	
Right central incisor	0.598	0.460	0.738	0.844	0.776	0.906	
Right lateral incisor	0.834	0.750	0.961	0.892	0.863	0.931	
Right canine	0.789	0.731	0.847	0.547	0.491	0.576	
Right 1st premolar	0.911	0.887	0.928	0.924	0.900	0.944	
Right 2 nd premolar	0.667	0.507	0.752	0.651	0.577	0.700	
Right 1st molar	0.833	0.757	0.873	0.954	0.926	0.980	
Right 2 nd molar	0.926	0.896	0.977	0.905	0.854	0.968	
Facial to Lingual							
Left2nd molar	0.737	0.669	0.805	0.637	0.474	0.861	
Left1 st molar	0.865	0.777	0.922	0.911	0.880	0.939	
Left2nd premolar	0.868	0.842	0.887	0.878	0.848	0.903	
Left1 st premolar	0.441	0.131	0.808	0.808	0.680	0.896	
Left canine	0.517	0.277	0.685	0.823	0.704	0.96	
Left lateral incisor	0.438	0.145	0.748	0.771	0.616	0.899	
Left central incisor	0.386	0.017	0.787	0.661	0.399	0.846	
Right central incisor	0.485	0.269	0.811	0.930	0.884	0.955	
Right lateral incisor	0.388	0.266	0.614	0.872	0.797	0.969	
Right canine	0.772	0.689	0.842	0.781	0.711	0.908	
Right 1st premolar	0.762	0.612	0.946	0.600	0.397	0.926	
Right2nd premolar	0.402	0.092	0.572	0.903	0.876	0.919	
Right 1st molar	0.741	0.690	0.784	0.840	0.777	0.927	
Right 2 nd molar	0.788	0.731	0.851	0.618	0.569	0.646	

Table 11. Inter-examiner Correlation.

when p < 0.0015 (0.0533), since the *t*-test performed 33 tests simultaneously. Using this criteria, 3 of the 33 paired measurements were found to have a significant p value; intercusp distance between mesio-buccal cusps of 2nd molars on digital models, inter-cusp distance between mesio-buccal cusps of 1st molars on digital models, and the bucco-lingual measurement of the left canine on digital models.

Discussion

Regarding the Interclass Correlation Coefficient (ICC), it is essential to remember that the values fall within a range. A perfect positive correlation value is 1.000, and no correlation is 0.000. For this study we determined that values above 0.750 have excellent correlation, values above 0.400 can be considered to correlate well, and values below 0.400 do not show good correlation [18]. The Intraclass Correlation Coefficient results show that intra-examiner CBCT measurement correlation was good to excellent at 0.681, (bucco-lingual of left 1st premolar) to 0.991 (mesio-buccal cusp of right 1st molar to mesio-buccal cusp of left 1st molar). The intra-examiner correlation for plaster cast measurements varied from 0.679 (mesiodistal of left canine) to 0.993

OHDM - Vol. 13 - No. 4 - December, 2014

Mean Std.De	Std.Deviation Std.Error		95% Co Interval of tl	nfidence ne Difference	t	df	Sig.(2-tailed)	
			Mean	Mean Lower	Upper			
2nd Molars	0.8673	0.87038	0.15891	0.54233	1.19234	5.458	29	0.000
1st Molars	0.6953	0.81376	0.14857	0.39147	0.99919	4.680	29	0.000
2nd Premolars	0.1380	0.78076	0.14255	-0.15354	0.42954	0.968	29	0.341
1st Premolars	0.2380	0.78037	0.14248	-0.05339	0.52939	1.670	29	0.106
Canines	0.2750	0.64110	0.11705	0.03561	0.51439	2.349	29	0.026

Table 12. t-Test: Paired Differences of Plaster Models and CBCT Scans Cusp to Cusp.

Table 13. t-Test: Paired Differences of Plaster Models and CBCT Scans Facial to Lingual.

	Mean	Std.Deviation	Std.Error Mean	d.Error Mean		t	df	Sig.(2- tailed)
				Lower	Upper	-		
Left 2 nd molar	-0.1363	0.44736	0.08168	-0.30338	0.03071	-1.669	29	0.106
Left 1 st molar	0.0320	0.28634	0.05228	-0.07492	0.13892	0.612	29	0.545
Left 2 nd pre molar	0.0413	0.30044	0.05485	-0.07085	0.15352	0.754	29	0.457
Left 1 st pre molar	0.0197	0.44145	0.08060	-0.14517	0.18451	0.244	29	0.809
Left canine	0.2990	0.40818	0.07452	-0.45142	-0.14658	-4.12	29	0.000
Left lateral incisor	0.3070	0.81793	0.14933	0.00158	0.61242	2.056	29	0.049
Left central incisor	0.3370	0.90880	0.16592	-0.00235	0.67635	2.031	29	0.052
Right central incisor	0.4177	0.82229	0.15013	0.11062	0.72471	2.782	29	0.009
Right lateral incisor	0.2827	0.71059	0.12974	0.01733	0.54801	2.179	29	0.038
Right canine	-0.0737	0.62240	0.11363	-0.30607	0.15874	-0.648	29	0.522
Right 1 st pre molar	0.0697	0.26187	0.04781	-0.02812	0.16745	1.457	29	0.156
Right 2 nd pre molar	0.1953	0.36759	0.06711	0.05807	0.33259	2.911	29	0.007
Right 1 st molar	0.0683	0.32182	0.05876	-0.05184	0.18850	1.163	29	0.254
Right 2 nd molar	-0.1047	0.28208	0.05150	-0.21000	0.00066	-2.032	29	0.051

Table 14. t-Test: Paired Differences of Plaster Models and CBCT Scans Mesial to Distal.

	Mean	Std. Deviation	Std. Error Mean		dence Interval of the Difference	t	df	Sig. (2-tailed)
				Lower	Upper			~-g. (- ····· /)
Left ²ⁿ d molar	-0.0143	0.61529	0.11234	-0.24409	0.21542	-0.128	29	0.899
Left 1 st molar	0.0070	0.33772	0.06166	-0.11911	0.13311	0.114	29	0.910
Left 2 nd pre molar	0.1077	0.43150	0.07878	-0.26879	0.05346	-1.367	29	0.182
Left 1 st pre molar	0.1037	0.46506	0.08491	-0.06999	0.27732	1.221	29	0.232
Left canine	0.1343	0.35099	0.06408	0.00327	0.26539	2.096	29	0.045
Left lateral incisor	-0.0497	0.35818	0.06539	-0.18341	0.08408	-0.759	29	0.454
Left central incisor	-0.05573	0.281361	0.051369	-0.160795	0.049329	-1.085	29	0.287
Right central incisor	0.0433	0.33011	0.06027	-0.07993	0.16660	0.719	29	0.478
Right lateral incisor	0.1103	0.37135	0.06780	-0.02833	0.24900	1.627	29	0.114
Right canine	0.0537	0.41852	0.07641	-0.10261	0.20994	0.702	29	0.488
Right 1 st pre molar	0.0057	0.22408	0.04091	-0.07801	0.08934	0.139	29	0.891
Right 2 nd pre molar	0.0520	0.30029	0.05483	-0.06013	0.16413	0.948	29	0.351
Right 1 st molar	0.0633	0.33405	0.06099	-0.06140	0.18807	1.038	29	0.308
Right 2 nd molar	-0.0733	0.39182	0.07154	-0.21964	0.07298	-1.025	29	0.314

(mesio-buccal cusp tip of right 1st molar to mesiobuccal cusp tip of left 1st molar) and were essentially equally as strong. However, the correlation of the intra-examiner measurements for mesio-distal left 1st premolar was 0.227. This should be considered poor correlation.

Inter-examiner CBCT correlation ranged from 0.386 (labio-lingual of left central incisor) to 0.970 (mesio-buccal

cusp tip of right 1st molar to mesio-buccal cusp tip of left 1st molar). The inter-examiner correlation for the plaster models was 0.409 (mesio-distal of left canine) to 0.972 (buccal cusp tip of right 2nd premolar to buccal cusp tip of left 2nd premolar). The low value of 0.386 for the inter-examiner digital model measurements is technically poor correlation, and the value of 0.409 for plaster model measurement is technically good

correlation. But, it should be kept in mind that the values fall along a range from 1.000 to 0.00. A value of 0.386 is not so far from our determined cut-off of 0.400 for good correlation and should not be summarily dismissed. Similarly, 0.406 is very close to the bottom and should be regarded as very weak correlation.

The extreme outlier is the mesio-distal dimension of the left1st premolar with an inter-examiner correlation value of 0.181. It is worthwhile to examine potential causes for both the intra- and inter- examiner correlation to be so low for the measurements of the left 1st premolar. We have controlled for blebs and fractures. Is abnormal anatomy to blame? Perhaps the 1st premolars in the sample are anomalous. Checking the correlation value at 0.972 and the inter-correlation value at 0.924. These values display excellent correlation and are among the best in the study.

Another source of the poor correlation is measurement error. Before concluding that sloppy measurement is to blame, some perspective in the measurement values is helpful. The average linear measurement value discrepancy for all evaluations of the left 1st premolar is 0.10mm. The measurement of the plaster casts with calipers by all observers and the measurement of distance in virtual models by the same observers only varies on average one-tenth of one millimeter. The tolerances for correlation and no correlation are so stringent that the average discrepancy of a tenth of a millimeter results in a correlation value that by strict statistical analysis should be rejected. However a deviation this small has been excused by other researchers as being apparently not clinically relevant [19].

The paired *t*-test conducted on the data set is an interexaminer comparison of the measurements of the digital models to the "gold standard" of measurements of the plaster models. The plaster models were directly CBCT scanned and the same models were directly measured by the observers in the study. The variance of measurements between the plaster and digital model renderings is attributable to either operator error or an inherent distortion in the computer-rendered images. The paired *t*-test seeks to answer the question: Are differences between paired measurement means statistically significant?

References

1. Proffit (Editor). Contemporary Orthodontics, (4th Edn), pp.195-200, Mosby Inc.

2. Hildebrand JC. Evaluation of software program for applying the American Board of Orthodonticsobjective grading system to digital casts. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2008; **133**; 283-289.

3. Okunami TR, Kusnoto B, BeGole E, Evans CA, Sadowsky C, Fadavi S. Assessing the American Board of Orthodontics objective grading system: Digital vs plaster dental casts. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2005; **131**: 51-56.

4. Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW. Validity, reliability, and reproducibility of plaster vs digital study models: Comparison of peer assessment rating and Bolton analysis and their constituent measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2006; **129**: 794-803.

5. Schirmer UR, Wiltshire WA. Manual and computer-aided space

At a significance level of p < 0.0015 three inter-examiner measurements were statistically significant. They were intercusp distance between mesio buccal cusps of 2nd molars on digital models, inter-cusp distance between mesio buccal cusps of 1st molars on digital models, and the bucco-lingual measurement of the left canine on digital models. The mean measurement discrepancy for these measurements was 0.80 mm, 0.7 mm and 0.3 mm, respectively.

For comparison, the average absolute difference for all variables in this study was 0.16 mm. It is likely that human measurement error is to blame for the statistical red flags. Clinically speaking, our observers were only discrepant in the worst case by an average of 0.8 millimeter when measuring a distance of over 50 millimeters from digital cusp to digital cusp.

Statistically, the discrepancy is noteworthy. Practically, it is not clinically significant. Several similar studies have noted measurement error as a source of variation of observation [9,10,20].

In the future, there will not be one single dominant modality for deriving digital dental models, since there are advantages to each alternative.

The benefits of digital models rendered from a CBCT scan of plaster casts include excellent soft-tissue reproduction, no radiation exposure for the patient, no scatter on the image from metal dental restorations, no need to purchase another scanning method for offices that have already obtained CBCT machines, and the ability to digitally archive any already existing plaster dental model. These advantages coupled with clinical accuracy ensure that 3-dimensional digital models rendered from CBCT scans of plaster casts are an appropriate alternative to traditional plaster models.

Conclusion

1. Standard deviations for most variables tested were less than 1.0 mm. with 20 of the 33 measurements at 0.5 mm or less.

2. Inter-examiner correlation was acceptable except for the labial-lingual width of the left central incisor.

3. Intra-examiner correlation was acceptable except for the mesio-distal length of left central incisor.

4. Digital images from CBCT scans of plaster models are an acceptable alternative to plaster models.

analysis: A comparative study. *American Journal of Orthodontics and Dentofacial Orthopedics*. 1997; **112**: 676-680.

6. Champagne M. Reliability of measurements from photocopies of study models. *Journal of Clinical Orthodontics*. 1992; **10**: 648-650.

7. Ryden H and Martensson B. Tooth position measurements on dental casts using holographic images. *American Journal of Orthodontics*. 1982; **81**: 310-313.

8. Christiansen GJ. Will digital impressions eliminate the current problems with conventional impressions? JADA. 2008; **139**: 761-763.

9. Bootvong K, Liu Z, McGrath C, Hägg U, Wong RW, Bendeus M, Yeung S. Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. *European Journal of Orthodontics*. 2010; **32**: 589-595.

10. Costalos PA,Sarraf K, Efstratiadis SE, Cangialosi TJ. Evaluation of the accuracy of digital model analysis for the American Board of Orthodontics objective grading system for dental casts. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2005; **128**: 624-629.

11. Santoro M, Jarjoura K, Cangialosi TJ. Comparison of measurements made on digital and plaster models. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2003; **124**: 101-105.

12. Kau CH, Littlefield J, Rainy N, Nguyen JT, Creed B. Evaluation of CBCT digital models and traditional models using little's index. *Angle Orthodontist*. 2010; **80**: 435-439.

13. Bodganich W, Craven McGinty J. Radiation worries for children in dentist's chairs. The New York Times. 2010

14. Palomo MJ, Rao PS, Hans MG. Influence of exposure conditions on radiation dose. *Oral Surgery, Oral Medicine, OralPathology, Oral Radiology and Endodontics.* 2008; **105**; 773-782.

15. Ludlow and Palomo. Letter to the editor and author's response. Oral Surgery, Oral Medicine, OralPathology, Oral Radiology and Endodontics. 2008; **106**; 628-631.

16. Vasudavan S, Sullivan SR, Sonis AL. Comparison of intraoral 3D scanning and conventional impressions for fabrication

of orthodontic retainers. *Journal of Clinical Orthodontics*. 2010; 44: 495-497.

17. Nickerson CAE. A note on "A concordance correlation coefficient to evaluate reproducibility." *Biometrics*. 1997; **53**: 1503-1507.

18. Roberts CT, Richmond S. The design and analysis of reliability studies for the use of epidemiological and audit indicies in orthodontics. *British Journal of Orthodontics*. 1997; **24**: 139-147.

19. Leifert, MF, Leifert MM, Efstratiadis SE, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2009; **136**: 1-4.

20. Osvenik M, Farcnik F, Verdenik I. Intra- and inter-examiner reliability of intraoral malocclusion assessment. *European Journal of Orthodontics*. 2007; **29**: 88-94.