
A Review: Detecting Alterations of Brain Connectivity in Schizophrenia based
on Structural MRI
Chunlan Yang1*, Wan Li1, Wu Weiwei1, Shuicai Wu1*and Wangsheng Lu2

1College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
 2Center of Neurosurgery, PLA NAVY General Hospital, Beijing, China

*Corresponding author: Chunlan Yang or Shuicai Wu, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China, 100022, Tel:
86-10-67391610; Fax: 86-10-67391610; E-mail: clyang@bjut.edu.cn; shuicaiwu@bjut.edu.cn

Received date: September 2, 2014, Accepted Date: September 23, 2014, Published Date: September 30, 2014

Copyright: © 2014 Yang C et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Schizophrenia is a common psychiatric disease with brain connectivity changed. Nowadays brain network has
become an effective tool to detect the abnormal brain connectivity in patients. Compared with studies focused on
functional and white matter connectivity, the research of grey matter connectivity is relatively less and should be paid
more attention. The primary approach of grey matter connectivity analysis is based on brain network constructed
from structural MRI (sMRI). There are several morphometric features such as cortical thickness, volume, and
curvature etc. Which could be used for sMRI brain network construction? This review briefly introduced sMRI brain
network construction and analysis, presenting the most frequently used morphometric features with their
effectiveness in schizophrenia, highlighting the application of sMRI brain network in schizophrenia, and finally
estimated its potential value.
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Introduction
Schizophrenia is a complex condition with a wide range of clinical 

signs [1]. Generally it was defined as a chronic and debilitating mental 
disorder, which usually has an onset in adolescence or early adulthood 
[2]. It involves abnormal emotional responses and difficulty with 
social interactions [3]. In addition, patients with schizophrenia exhibit 
impairments in both basic sensory processing and higher cognitive 
functions, such as language, reasoning and planning [4]. Nowadays, 
there are some brain image systems helping to diagnose of 
schizophrenia, like structural MRI [5], diffusion MRI [6], functional 
MRI [7], PET [8], MEG [9] and SPECT [10] etc. However, the etiology 
and pathophysiology of schizophrenia remain unknown [2], while 
indeed, schizophrenia has come to be regarded more and more as a 
disease of disconnectivity [11]. Therefore, it makes brain network play 
an extremely important role in detection of altered brain connectivity 
in schizophrenia.

For different diagnosis purpose, various brain networks have been 
developed. To date, there are mainly three forms of network: 
functional network derived from BOLD-MRI (Blood- Oxygen- Level 
Dependent (fMRI) [12-14]; structural network derived from diffusion 
MRI (DTI) focused on white matter [15-17]; and structural network 
derived from structural MRI (sMRI) focused on gray matter [18-20]. 
Compared with sMRI-based network, DTI-based and fMRI-based 
networks are easier to build because it is necessary to extract one or 
more reasonable morphometric features for construction of sMRI-
based network. For this reason, sMRI-based network is relatively less 
popular used although sMRI has the merit of higher resolution. But 
with the development of neuroimaging technique, it will be widely 
used and attach the equal importance with DTI-based and fMRI-based 
networks.

In this review, we concentrated on application of sMRI-based
network in schizophrenia. First, the construction of sMRI-based
network was briefly outlined. Second, the frequently used
morphometric features were elucidated. Third, analysis of brain
connectivity alteration in schizophrenia using sMRI-based network in
recently researches were presented. Finally, the problems and future
development of sMRI-based brain network were pointed out.

Structural MRI Network
Alexander et al. [11] revealed that networks construction and 

analyses generally used three steps: seed analysis, principal component 
analysis (PCA)and graph analysis. These procedures are not exclusive 
to sMRI network and more details were represented in the following 
sections.

Seed Analysis
To construct the network, firstly we need to determine the 'nodes' of

the network according to brain parcellation. Automated anatomical
labeling (AAL) [21] is the most commonly used parcellation
template.Besides, there are also Harvard Oxford (H-O) [22], Eickhoff–
Zilles (E-Z) [23], Talariach–Tournoux (T-T) [24] and CC200 (or
CC400) [25] in use. After parcellation, each node needs to be defined
as at least one morphometric feature. Therefore, the morphology in
the regions could be compared with each other and then a whole-brain
map of structural co-variance could be generated [11].

Principal Component Analysis
PCA uses an orthogonal transformation to convert a set of

observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components [26].
This theory was invented in 1901 by Karl Pearson [27]. In brain
network construction, PCA reduces the inter-regional co-variance
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across people to a small number of factors which are easier to visualize
and interpret [11].

Graphic Theory
Graphic theory provides a powerful tool to quantitatively describe

the topological organization of brain network connectivity [28,29].
Clustering coefficient [30], shortest path length [31], small-worldness
[32], degree [33], nodal efficiency [34] and betweenness centrality [35]
are the most frequently used parameters to describe the topological
properties of brain network. Moreover, the abnormal regions could be
identified using brain network.

Morphometric Features
Various forms of brain network have been established based on the

corresponding brain features. For DTI-based brain network, the tensor
of water molecules in fiber bundles of white matter is the feature
which represents how seed regions connect to each other. And in
fMRI-based brain network, the correlation between BOLD signals is
the feature to present whether the seed regions have the connectivity.
While for sMRI-based brain network, the feature is extracted from
grey matter based on morphometry.

Levitt et al. proposed that schizophrenia is believed to be a disorder
which many regions of the brain affected [36]. There have been large
amount of imaging studies assessing brain morphometry to detect
abnormalities in multiple regions in this devastating disorder.
Therefore, morphometry, and specifically, morphometric feature is the
basis of the sMRI-based brain network construction and analysis.
There are diverse morphometric features because brain morphometry
can be measured through multiple ways, which turns out to be an
advantage of sMRI that can tell us more than one aspect of brain
condition. We will elaborate the common morphometric features with
references as following.

Cortical Thickness
Cortical thickness was estimated as the shortest distance between

the gray and white matter border and the pial surface at numerous
points across the entire cortical mantle [37]. Its variation across
the human brain follows small-world principles [38]. Kuperberg et al.
have found significant thinning in distributed areas of the cortex, most
prominently in frontal and temporal region sinchronic schizophrenia
patients [39]. Nesvåg et al. found thinner cortex located in prefrontal
and temporal regions of both hemispheres in schizophrenia patients,
while parietal and occipital regions were relatively spared [37]. But
Wieg and et al. did not detect cortical thinning averaged across the
entire prefrontal lobe in first episode schizophrenia patients [40].

Volume
Brain size is measured by volume via MRI scans. Van Haren et al.

suggested that brain maturation occurring in the third and fourth
decade of life is abnormal in schizophrenia, based on the longitudinal
study that different age-related trajectories of brain tissue loss are
present in patients compared to healthy subjects [41]. Scheewe et al.
found significantly smaller baseline cerebral (grey) matter, and larger
third ventricle volumes, and thinner cortex in most areas of the brain
in patients with schizophrenia [42]. Abbs et al. [43] found that
in schizophrenia, anterior cingulate gyrus (ACG) volume was reduced
in females, but not in men, relative to controls.

Curvature
Curvature of the brain surface provides an effective method for 

assessing the character of convolutions on the brain’s surface, thereby 
serving as an index of normal versus abnormal brain development [44]. 
Ronan et al. found that millimeter-scale intrinsic curvature measures 
were more robust and consistent in identifying reduced gyrification in 
patients with schizophrenia [45].

Complexity
Cortical complexity is a measurement which could quantify the

spatial frequency of gyrification and fissuration of the brain surface
[46]. Wiegand et al. found prefrontal cortical complexity was not
significantly different among the groups including both subtypes of
patients and healthy controls [47]. However, the schizophrenia
patients differed significantly from the healthy subjects in asymmetry,
showing less left-greater-than-right asymmetry in cortical complexity
than the controlled subjects. 

Density
After the individual images were segmented and registered, each

voxel then achieved a measure of the probability, according to which it
belongs to a certain tissue class. For gray matter, this quantitative
measurement is usually represented as gray matter density (GMD) or
gray matter concentration (GMC), or gray matter probability (GMP)
[48]. Stegmayer et al. had the main finding which suggests severe
emotional disturbance in schizophrenia be particularly associated with
reduced GMD in a large cluster including the ventral striatum [49].

Cortical folding
The degree of folding relative to brain size remains relatively stable

from early childhood [50,51], and is thus a suitable subject for
investigation of brain disorder. Abnormalities like schizophrenia
might denote abnormal cortical folding development, which can now
be investigated using gyrification measures [52]. Nesvåg et al. [53]
found the reduced degree of folding in large regions of the cerebral
cortex across two independent samples indicates that reduced
gyrification is an inherent feature of the brain pathology in
schizophrenia.

sMRI-based Brain Network Application in Schizophrenia
With the development of morphometric feature studies, brain

network helps us get more information about the whole brain
connection. Besides, discoveries of structural MRI-based network in
schizophrenia can complement studies which show disrupted white
matter tracts [3] and functional connectivity [54] between brain
regions in the disease [11]. Then, we will present the results of recent
researches of sMRI-based network applied in the schizophrenia.

Salgado et al. compared grey matter volumes using voxel-based 
morphometry (VBM) and discovered volume reductions in medial 
cortical regions which overlapped with the same parts of the functional 
network in the patients [19,55]. Bassett et al. [56] constructed the 
anatomical networks derived from analysis of inter-regional co 
variation of gray matter volume. They proposed that the topological 
differences between divisions of normal cortex may represent the 
different growth processes. What’s more, neuro developmental 
abnormalities in schizophrenia specifically impact multimodal cortical 
organization. Shi et al. [57] indicated that the
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brain structural associations of the high-risk neonates tended to have
globally lower efficiency, longer connection distance, and less number
of hub nodes and edges with relatively higher betweenness by the
morphological network analysis. Zhang et al. constructed the brain
networks by thresholding cortical thickness correlation matrices and
they found both characteristic path length and clustering coefficient
increased in the structural cortical networks of patients [18].
Moreover, in two years later, Zhang et al. also found that less
distributed cortical regions were identified in the thalamo-cortical
network in patients with schizophrenia, but vertex-wise comparison
revealed decreased thalamo-cortical connectivity in bilateral inferior
frontal gyrus, the left superior temporal gyrus and the right parieto-
occipital region, by constructing a thalamo-cortical network to assess
the correlation between the thalamic volume and cortical thickness at
each vertex on the cortical surface [58]. Rüsch et al. did a research on
regional gray matter volumes [59] and analyzed by VBM within SPM5
(statistical parametric mapping) [60], the results show that patients
with schizophrenia have reduced gray matter volume in dorso lateral
prefrontal and anterior cingulate. Jagannathan et al. found gray matter
deficited in patients with schizophrenia consistently with previous
reports, including frontal and temporal lobes and thalamus [61].
Bagary et al. found that smooth pursuit abnormalities were associated
with reduced magnetization transfer ratio in several regions,
predominantly in the right prefrontal cortex [62]. Collin et al.
discovered schizophrenia patients showing both decreased (e.g.
between left frontal and bilateral subcortical, p ≤ 0.005) and increased
(e.g. between left temporal and bilateral subcortical, p ≤ 0.001)
coupling between lobar grey matter volumes [63]. Glahn et al. found
patients had reduced gray matter density in a distributed network of
regions (including bilateral insular cortex, anterior cingulate,
left parahi ppocampal gyrus, left middle frontal gyrus, postcentral
gyrus, and thalamus) and increased gray matter density in striatal
regions [64].

Conclusions
Brain network construction and analyses is becoming an essential

tool recently, to help diagnosing the nerve system disorder and
orientating the foci, such as schizophrenia which might not has
apparent brain damages presented on MRI or other images. For sMRI-
based brain network, according to the recent researches, the detected
localization of foci, like frontal lobes, thalamus, hippocampus and
temporal lobes, is generally same with the result by fMRI-based
network. Altered morphometric features such as grey matter reduction
and density change were discovered, and the network topology
analysis of patients showed lower globally efficiency, longer
connection distance, less number of hub nodes and edges with
relatively higher betweenness, increased characteristic path length and
clustering coefficient.

Compared with the other two forms of brain network, the
development of sMRI-based brain network is a little bit lagged behind.
On the other way, it still has so many interesting and amazing
properties remained to explore. At present, sMRI-based network is
constructed on inter-regional correlations estimated from a group of
individual images [11], which means it's not feasible for individual.
Although there are some studies proposed methods [65,66] to solve
this problem, they still have limitations and needs to be improved for
application. Another problem is that, morphometric features used in
network construction were generally focused on cortical thickness and

volume, which more sensitive morphotric features able to describe the
disease should be considered.
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