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ABSTRACT
Despite their serious disadvantages, which include higher upfront costs, the possibility of malfunctions due to 

corrosiveness, and a negative impact on the organoleptic properties of the food and possibly its nutritional 

importance, conventional antibacterial techniques such as pasteurization, pressure preparation, and radioactive 

substances are also valid as synthetic antiseptics, in fact, reduce bacterial growth in food to varying degrees. Most 

importantly, these cleaning techniques remove all contaminants, including various (often helpful) microorganisms 

found naturally in food. One potential solution to some of these issues is bacteriophage bio-control, a common and 

inexpensive method that uses lytic bacteriophages taken from the environment to selectively target harmful bacteria 

and eliminate significantly reduce their stages of feeding. It has been claimed that using bacteriophages on food is a 

novel way to prevent the growth of germs in vegetables. Bacteriophages are preferred because of their selectivity, 

security, stability, and usage. This review highlights the role of bacteriophages in food safety and their advantages in 

detail.
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INTRODUCTION
Dieticians and health specialists globally promote the intake of 
fresh fruits and vegetables owing to their rich content of 
essential vitamins, minerals, and nutrients [1]. Though, fresh 
produce remains a significant source of foodborne illnesses, with 
over 400 outbreaks related to produce reported since 1990, 
particularly associated with tomatoes, leafy greens, and sprouted 
seeds [2]. Factors like open-field cultivation and handling add to 
the contamination of fruits and vegetables by microorganisms, 
leading to spoilage and food waste along the production process 
[3].

To address these challenges, non-chemical approaches to food 
safety have gained attention, especially in the context of rising 
organic food making and health awareness. Bacteriophages, 
which are bacterial viruses capable of infecting and killing 

specific bacterial hosts, have emerged as potential bio-regulator 
agents for enhancing food safety and reducing waste [4]. By using 
bacteriophages, foodborne illnesses can be minimized, and food 
spoilage can be prevented, offering a promising solution to 
improving food safety and sustainability.

Various studies have explored the application of bacteriophages 
as antibacterial agents to enhance microbiological food safety 
and reduce pathogenic and spoilage microorganisms in food 
products such as milk, poultry, cheeses, vegetables, and fresh 
fruits [5,6]. This review highlights the prospective application of 
bacteriophages in regulating microbial contamination in fresh 
fruits and vegetables, dairy products, and convenience foods, 
presenting an innovative approach to ensure food safety and 
minimize food waste.
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concerns can unlock the potential of phage-based bio-control 
strategies in ensuring food safety.

Bacteriophage treatment in antimicrobial resistance
and infectious diseases

Bacteriophages, outnumbering bacterial cells by a factor of 10 in 
the environment as well as the intestines of both animal and 
human species, comprising a vast range of host organisms. Their 
genome sizes vary from 3.4 kilobases (kb) to around 500 
kilobases (kb), containing numerous uncharacterized genes and 
proteins [15]. Phages undergo two discrete life cycles: Lysogenic 
and lytic. Lysogenic phages integrate their viral genome into the 
host's genetic material, while lytic phages kill infected host cells 
[16]. They exhibit improved selectivity and a restricted host 
range, binding to host cells through various receptors, such as 
proteins, sugars, and lipopolysaccharides (Figure 1) [17].

Figure 1: Application of bacteriophages as antimicrobial.

DISCUSSION
Phages have a long history of being considered for the
management of infectious diseases before the development of
antibiotics. Recognized by microbiologist Felix d'Herelle in 1917,
phages were primarily explored for their antibacterial activity
against dangerous germ cells. Phage therapy showed promising
results in controlling diseases like bacillary dysentery and
cholera outbreaks [18]. However, the discovery of antibiotics in
the 1930’s and 1940’s led to a decline in phage research.
Challenges such as inconsistent findings, dosages, repeatability,
and limited genetic information hindered further exploration.

Recent resurgence in phage research comes as an
unconventional route to combat the growing threat of
Antimicrobial Resistance (AMR). In Eastern Europe, phage
treatment has been effectively used for around 90 years without
posing health risks to patients [19]. In countries like Poland,
bacteriophage treatment has proven effective against AMR
diseases [20]. As current therapeutic methods falter,
bacteriophage therapy offers a promising option, particularly in
managing infections like Clostridioides Difficile Infection (CDI)
with high fatality rates. While challenges remain, bacteriophage
treatment presents a solution to combat AMR and infectious
diseases.
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Foodborne illnesses: The connection to
contaminated food

Foodborne illness caused by food contamination is the chief 
contributor to disease and mortality around the world. 
Approximately 250 gastrointestinal diseases have been 
identified, with about 9.4 million occurrences of foodborne 
outbreaks listed annually in the U.S. alone, ensuing about 
56,000 hospitalizations and 1300 fatalities [7]. The widely held 
of these cases are attributed to specific foodborne pathogens 
such as Shigella, Salmonella, Campylobacter, Listeria monocytogenes, 
and Escherichia coli pathotypes, along with other enteric 
microorganisms. The claim for fresh produce is a significant 
factor contributing to these incidences, often related to 
inadequate thermal storage and microbiologic contamination of 
equipment [8].

In addressing the emergence of bacterial resistance, 
bacteriophages, specialized viruses that target bacteria by 
rupturing their cell walls, are being explored as an alternative to 
antibiotics. Bacteriophages possess RNA or DNA genomes and 
can yield endolysin enzymes that split peptidoglycan, leading to 
cell wall lysis [9]. Furthermore, the bacteriophage genome 
comprises proteins known as amurins, which inhibit cell wall 
formation, causing cell wall rupture.

Bio-control capability of bacteriophages against
dietary pathogens

Since the discovery of bacteriophages by Francis type of circuit 
and Walter d'Herelle a century earlier [10], researchers have 
demonstrated their potential in curing microbial enterococcus 
illnesses like cholera, correctly selected, and giardiasis, as well as 
a variety of acute or prolonged pathogens in fields such as 
cardiology, gastroenterology, neonatology, and multiple 
surgeries. These infectious agents have been used for various 
agricultural, animal, and human applications, but their 
application in local food production remains unexplored [11]. 
Contaminated food episodes associated with fresh produce have 
emphasized the need for concrete methods to eradicate harmful 
bacteria from food. However, traditional commercial sanitizers 
have been shown to have limitations in removing pathogens 
from the surfaces of fruits and vegetables [12].

To find better alternatives for ensuring bacterial exclusion on 
fresh produce, researchers have explored techniques such as 
radioactivity, consumable covering, nitrogen oxides, ultraviolet, 
climate-controlled storage, potassium permanganate, water, and 
viral proteins [13]. Phages, as operative and reasonable options 
for organic management, do not destroy the flavor of fresh food 
like conventional cleaning methods do. Investigating viral 
formulations for the overall bio-control capability of 
bacteriophages against dietary pathogens linked to bug of fruits 
and vegetables has been a focus. However, the unexpected 
outcomes have posed challenges in the application of phages for 
phytoremediation in the native food sector, which is attributed 
to inadequate treatment during viral concentration and limited 
knowledge of bacteriophage ecology [14]. Addressing these
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pathogens. The table below describes the process of phage 
regulation and their effects on pathogenic bacteria [25-28].

Food Bacteria targeted Bacteriophage used Effects References

Beef E. coli O157 EP75 and EP335 Reductions of 0.8-1.1 log10 
CFU/cm2 and 0.9-1.3 log10 
CFU/cm2, respectively.

Witte, et al. 

Raw meatball E. coli O157:H7 M8AEC16 Gencay, et al. 

Beef and lettuce E. coli O157:H7 EcoShield™ Reduced the level of bacteria 
by ≥ 94% and 87% after 5 
min contact time in meet 
and lettuce, respectively.

Carter, et al. 

Beef E. coli O157:H7 PS5/Myoviridae Duc, et al. 

Chicken S. typhimurium PS5/Myoviridae A 1.2 log10 CFU/piece after 
24 h post application at 4℃ 
and a 1.6 log10 CFU/piece 
after 6 h post application at 
24℃.

Duc, et al. 

Beef (coarse and fine 
ground)

S. enterica (ATCC 51741), S. 
Heidelberg (ATCC 8326), S. 
Newport (ATCC 27869),
and S. Enteritidis C (Se 13)

Salmonelex™ (S16 and the
FO1a)/Myoviridae

Overall, a reduction of 1.6 
log10 CFU/g was observed 
after the application of 109 
phage.

Shebs, et al. 

Ground red meat trim and 
poultry

S. Infantis (ATCC 51741), 
S. Heidelberg (ATCC 8326), 
S. Newport (ATCC 27869),
and S. Enteritidis (SE13)

Salmonelex™ (S16 and the
FO1a)/Myoviridae

Yeh, et al. 

Chicken skin Cocktail of S. typhimurium, S. 
Heidelberg, and S. Enteritidis

SalmoFresh™ Sukumaran, et al. 

Chicken S. typhimurium, S. Newport, 
S., and Thompson

Salmonelex™ A reduction of 0.39 
log10 CFU/cm2 and 0.67 

Grant, et al. 

Amjad N, et al.

Phage based biocontrol of food pathogens

Several experimental studies have investigated the use of phages 
to control pathogens in various food products and leafy green 
vegetables as described in Table 1 [21-24]. This indicates that 
bacteriophages are a promising regulator of food-borne
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Table 1: Application of bacteriophages in regulating food borne pathogens.

A reduction of 0.69-2.09 
log10 CFU/g after 5 h of 
application.

A 2.4 log10 CFU/piece after 
24 h post application at 
4℃, whereas a 3.5 log10 
CFU/piece after 6 h post 
application at 24℃.

Overall, phage application 
on trim reduced 0.8 and 1 
log10 CFU/g of Salmonella 
in ground pork and beef, 
respectively, whereas a 
reduction of 0.9 and 1.1 
log10 CFU/g occurred in 
ground turkey and chicken, 
respectively.

A reduction of 0.9-1 log10 
CFU/cm2 with phage only. 
Whereas a greater reduction 
of 1.6 and 1.8 log10 CFU/
cm2 after 2 and 24 h. after 
chlorine and phage 
treatment.



Meat L. monocytogenes Halal-certified list-shield Ishaq, et al.

Fresh salmon meat L. monocytogenes SH3-3/Myoviridae A reduction of 2.67, 4.14, 
and 4.54 log10 after 24, 48, 
and 72 h of phage addition, 
respectively.

Zhou, et al.

Chicken Cocktail
of L. monocytogenes strains
ATCC 19113, ATCC19115,
and ATCC 13932

List shield A mean reduction of 0.56,
0.84, 0.46, and 0.10 log    
cycles in viable counts was 
observed at 0, 24, 48, and 
72 h after phage treatment, 
respectively.

Yang, et al.

Cooked Turkey and roast 
beef

LISTEX™P100 Chibeu, et al.

Raw chicken and pork meat C. jejuni (NCTC 11168)
and C. coli (NCTC 12668)

NCTC group II phage 
12684 or CP81

No reduction at 4℃ after 7 
days of inoculation.

Orquera, et al.

Raw and cooked beef C. jejuni Cj6/Myoviridae Bigwood, et al.

Chicken C. jejuni (NCTC12662 or
RM1221)

F356 and F357 Zampara, et al.

Chicken liver C. jejuni (HPC5 and 81–
176)

Phages ϕ3 or
ϕ15/Myoviridae

Firlieyanti, et al.

Lettuce Salmonella ser. enteritidis 
(ATCC13076)
and Salmonella ser. 
typhimurium (ATCC14028)

BP 1369 and BP 1370/ 
Myoviridae and Podoviridae, 
respectively

Sadekuzzaman, et al.

Romaine lettuce VE04, VE05, and VE07 Lu, et al.

Amjad N, et al.
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log10 CFU/cm2 after 30 min 
and 8 h post-inoculation, 
respectively.

A reduction of 2.3 log10 
was recorded in phage 
treated beef samples during 
the storage period of 15 
days.

An initial reduction of 2.1 
and 1.7 log10 CFU/cm2, 
respectively, for cooked 
turkey and roast beef at 4℃, 
while an initial reduction of 
1.5 and 1.7 log10 CFU/cm2, 
at 10℃.

No reduction at 5℃
compared to control with 
low MOI. However, a 2 
log10 CFU/cm2 reduction 
on raw and cooked meat at 
high host density and a high 
MOI of 10,000.

A 0.73 log10 reduction at 
5℃ after 24 h 
post-treatment.

A reduction of 2.6-6 log10 
CFU/cm2 after 3 days of 
storage at a temperature of 
10℃.

A reduction of >1.0 log10 
CFU/cm2 after 2 h of 
post-treatment.

A 0.2 to 0.7 log10 CFU/g 
reduction 48 h 
post-treatment.

A cocktail of L. 
monocytogenes (serotypes; 
1/2a, 1/2b, and 4b)

Individual strains of STEC 
(EDL933; O157:H7, 
SN061; O26: H11, SN576; 
O111:NM and SN608; and 
O103:H2)



Romaine lettuce, mung 
bean sprouts, and seeds

Cocktail of Salmonella 
strains (newport, 
braenderup, 
typhimurium, 
kentucky, and 
heidelberg 

SalmoFresh™/Myoviridae Overall reduction by  
spraying SalmoFresh™ onto
lettuce and sprouts reduced 
Salmonella by 0.76 and 0.83 
log10 CFU/g, respectively, 
whereas a reduction of 2.43 
and 2.16 log10 CFU/g by 
immersion was observed on 
lettuce and sprouts, 
respectively.  

Zhang, et al.

Romaine and iceberg 
lettuce

E. coli O157:H7 AYO26, AXO111, AXO121, 
AYO145A/Myoviridae, 
AXO103, AKFV33/
Siphoviridae, and AXO45B

Ding, et al.

Studies have indicated that this translocation can be beneficial 
by directing the immuneresponse to innate microbial antigens 
and averting the development of certain inflammatory factors 
[35-38]. However, other research did not observe significant 
changes in cytokine levels after phage therapy [39]. In spite of 
limited data on phage treatment, it appears to have fewer side 
effects than conventional antibiotics and can reduce pathogenic 
flora in the gut [40-43].

Benefits Drawbacks References

Phages infect only one type of bacteria, making
consumer dysbiosis unlikely due to their
extreme specificity.

To meet the rising demands of the food industry, 
phage, and phage cocktail manufacturing must be 
scaled significantly.

Garvey, et al.; Culot, et al.

Phages barely affect the organoleptic qualities of
food.

Moye, et al.; Thanki, et al.

A rather high level of resistance to various food
preservation techniques is displayed by phages.

There is still disagreement on the stability of 
phages during food storage.

Garvey, et al.; Greer

Phages have tremendous efficacy, requiring just
a tiny amount to kill germs.

Bacterial phage resistance is frequently erratic 
and can evolve over time.

Garvey, et al.; Salmond and Fineron

Against bacterial biofilms, phages have 
demonstrated effectiveness.

At high temperatures, phages are prone to 
denaturation.

Liu, et al.; Garvey, et al.

The term "Generally Recognised as Safe" (GRAS) 
is now used to describe a few goods.

The amount of chlorine in water can have an
impact on the effectiveness of phages.

Vikram, et al., Zhang, et al.

Pathogens can emit pro-inflammatory substances 
such endotoxins and peptidoglycans when they 
are lysed.

Tang, et al.

Phages are appropriate for both pre and post-
harvest situations due to their wide variety of 
applications.

Imran, et al., Sisakhtpour, et al.
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Benefits and drawbacks of using phages as
antimicrobials

Phages, as antimicrobials, have both strengths and limitations as 
shown in Table 2 [29,30]. Their specificity in targeting diverse 
bacterial strains can be challenging, especially when dealing with 
illnesses caused by multiple strains [31-34]. While some trials 
have shown the safety of oral phage administration, a key 
concern is ensuring proper translocation of phages through the 
intestinal epithelium. 

A reduction of 2.6-3.2 and 
1.7-2.3 log10 CFU/g for low 
and high contamination, 
respectively.

Table 2: Benefits and drawbacks of using bacteriophages as antimicrobials.

Toxins carried by bacteriophages include 
pathogenicity islands, diphtheria toxin, cholera 
toxin, botulism toxin, and diphtheria toxin.

To guarantee the right administration of the 
proper phage or phage cocktail, accurate 
prediction of the current pathogens is essential.

Phages have the ability to replicate themselves, 
making minimal dosages necessary for 
effectiveness.



Phages are thought of as eco-friendly technology 
that is biocompatible with both people and 
animals.

The structure and properties of the food matrix
may have an impact on how well bacteriophages
work.

Garvey, et al., Vikram, et al.

The efficacy of phages against MDR bacterial
species has been established.

Bacterial endotoxins might possibly be present
in crude phage lysates.

Sisakhtpour, et al., Villa, et al.

Bacterial endotoxins might possibly be present
in crude phage lysates.

Lawpidet, et al.

Possible cures and preventative measures for
Clostridioides difficile (C. difficile) infections might
be provided by phages.

Giau, et al.
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