Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Nanomedicine & Nanotechnology

Articles published in Journal of Nanomedicine & Nanotechnology have been cited by esteemed scholars and scientists all around the world. Journal of Nanomedicine & Nanotechnology has got h-index 49, which means every article in Journal of Nanomedicine & Nanotechnology has got 49 average citations.

Following are the list of articles that have cited the articles published in Journal of Nanomedicine & Nanotechnology.

  2022 2021 2020 2019 2018

Total published articles

62 71 34 20 41

Conference proceedings

53 21 0 44 369

Citations received as per Google Scholar, other indexing platforms and portals

1184 1267 1095 929 906
Journal total citations count 10577
Journal impact factor 1.68
Journal 5 years impact factor 2.78
Journal cite score 25.25
Journal h-index 49
Important citations

Carini M, Da Ros T, Prato M, Mateo‐Alonso A. Shuttling as a Strategy to Control the Regiochemistry of Bis‐Additions on Fullerene Derivatives. ChemPhysChem. 2016;17;17(12):18

Huang L, Bhayana B, Xuan W, Sanchez RP, McCulloch BJ, Lalwani S, Hamblin MR. Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: potentiation by potassium iodide and photochemical mechanisms. Journal of Photochemistry and Photobiology B: Biology. 2018;1;186:197-206.

Zhou S, Sun Z, Ye Z, Wang Y, Wang L, Xing L, Qiu H, Huang N, Luo Y, Zhao Y, Gu Y. In vitro photodynamic inactivation effects of benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans. Photodiagnosis and photodynamic therapy. 2018;1;22:178-86.

Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochemical & Photobiological Sciences. 2018;17(11):1515-33.

Chen Q, Ma Z, Liu G, Wei H, Xie X. Antibacterial activity of cationic cyclen-functionalized fullerene derivatives: Membrane stress. Dig. J. Nanomater. Biostruct.(DJNB). 2016; 1;11:753-61.

Griffith M, Islam MM, Edin J, Papapavlou G, Buznyk O, Patra HK. The quest for anti-inflammatory and anti-infective biomaterials in clinical translation. Frontiers in bioengineering and biotechnology. 2016;9;4:71.

Carini M, Djordjevic L, Ros TD. Fullerenes in biology and medicine. Handbook of Carbon Nano Materials. 2012;15;3:1-48.

Hsieh YH, Zhang JH, Chuang WC, Yu KH, Huang XB, Lee YC, Lee CI. An in vitro study on the effect of combined treatment with photodynamic and chemical therapies on Candida albicans. International journal of molecular sciences. 2018;19(2):337.

Kawczyk-Krupka A, Pucelik B, MiÄ™dzybrodzka A, SieroÅ„ AR, DÄÂ…browski JM. Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. Photodiagnosis and photodynamic therapy. 2018;1;23:132-43.

de Siqueira LB, da Silva Cardoso V, Rodrigues IA, Vazquez-Villa AL, dos Santos EP, Guimarães BD, Coutinho CD, Vermelho AB, Junior ER. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology. 2017;10;28(6):065101.

Jeevani T. Nanotechnology in agriculture. J. Nanomed. Nanotechnol. 2011;2:124.

Wang Y, Zhou Q, Wang Y, Ren J, Zhao H, Wu S, Yang J, Zhen J, Luo Y, Wang X, Gu Y. In Vitro Photodynamic Inactivation Effects of Ru (II) Complexes on Clinical Methicillin‐resistant Staphylococcus aureus Planktonic and Biofilm Cultures. Photochemistry and photobiology. 2015;91(1):124-133.

Belik AY, Rybkin AY, Voronov II, Goryachev NS, Volyniuk D, Grazulevicius JV, Troshin PA, Kotelnikov AI. Non-covalent complexes of polycationic fullerene C60 derivative with xanthene dyes–Spectral and photochemical properties in water and in liposomes. Dyes and Pigments. 2017;1;139:65-72.

Kossakowska-Zwierucho M, Kaźmierkiewicz R, Bielawski KP, Nakonieczna J. Factors determining Staphylococcus aureus susceptibility to photoantimicrobial chemotherapy: RsbU activity, staphyloxanthin level, and membrane fluidity. Frontiers in microbiology. 2016;19;7:1141.

He X, G Aker W, Huang MJ, D Watts J, Hwang HM. Metal oxide nanomaterials in nanomedicine: applications in photodynamic therapy and potential toxicity. Current topics in medicinal chemistry. 2015;1;15(18):1887-900.

Liu C, Guo J, Yan X, Tang Y, Mazumder A, Wu S, Liang Y. Antimicrobial nanomaterials against biofilms: an alternative strategy. Environmental Reviews. 2016;17;25(2):225-44.

Rai M, Ingle AP, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti‐infectives to fight microbial intrusions. Journal of applied microbiology. 2016;120(3):527-42.

Prates RA, Fuchs BB, Mizuno K, Naqvi Q, Kato IT, Ribeiro MS, Mylonakis E, Tegos GP, Hamblin MR. Effect of virulence factors on the photodynamic inactivation of Cryptococcus neoformans. PloS one. 2013;8;8(1):e54387.

Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;1;13(4):1543-62.

Albert K, Hsu HY. Carbon-based materials for photo-triggered theranostic applications. Molecules. 2016;21(11):1585.