Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Nanomedicine & Nanotechnology

Articles published in Journal of Nanomedicine & Nanotechnology have been cited by esteemed scholars and scientists all around the world. Journal of Nanomedicine & Nanotechnology has got h-index 49, which means every article in Journal of Nanomedicine & Nanotechnology has got 49 average citations.

Following are the list of articles that have cited the articles published in Journal of Nanomedicine & Nanotechnology.

  2022 2021 2020 2019 2018

Total published articles

62 71 34 20 41

Conference proceedings

53 21 0 44 369

Citations received as per Google Scholar, other indexing platforms and portals

1184 1267 1095 929 906
Journal total citations count 10577
Journal impact factor 1.68
Journal 5 years impact factor 2.78
Journal cite score 25.25
Journal h-index 49
Important citations

Panwar N. Research and Reviews; Journal of Pharmaceutics and Nanotechnology.

Rabinal C, Chaudhari G. Nanotechnology in Agriculture: A Review.

Varsha YM. Ram Mohan Rao G, Venkateswara Rao V (2011) Cutting Edge Approach on Prodrug: Contrivance for Target Drug Delivery. J Bioequiv Availab. 2011;3:286-90.

Amrutha JV. Nano Science in Horticulture. Nano Sci Nano Technol. 2016;10(4):102.

Anusha N. Nanomedicine & Nanotechnology.

Dutta KR, Banerjee S, Mitra A. Medicinal plants of West midnapore, India: emphasis on phytochemical containment having role on oral cancer. International Journal of Phytopharmacology. 2012;3(2):198-208.

Tavakolifard S, Biazar E. Modification of carbon nanotubes as an effective solution for cancer therapy. Nano Biomed. Eng. 2016;8(3):144-60.

Jeevani T. Nanotechnology in agriculture. J. Nanomed. Nanotechnol. 2011;2:124.

Sai YR, Dattatreya A, Anand SY, Mahalakshmi D. Biomarkers and their role in premonition, interpretation and treatment of cancer. Journal of Cancer Science and Therapy S. 2011;17.

Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P. Nanotechnology in agriculture: a review. J Pure App Microbiol. 2015 ;9:737-47.

Tavakolifard S, Biazar E, Pourshamsian K, Moslemin MH. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artificial cells, nanomedicine, and biotechnology. 2016; 3;44(5):1247-1253.

Agrawal U, Chashoo G, Sharma PR, Kumar A, Saxena AK, Vyas SP. Tailored polymer–lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids and Surfaces B: Biointerfaces. 2015; 1;126:414-25.

Srilatha B. Nanotechnology in agriculture. Journal of Nanomedicine and Nanotechnology. 2011;2(7).

Lu Y, Wang ZH, Li T, McNally H, Park K, Sturek M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. Journal of controlled release. 2014; 28;176:76-85.

å¸Â‚ä¾Â†é¾Âå¤§, 永松å¯Â›åÂ’ÂŒ, äºÂ•ä¸ÂŠè²´å², å±±æÂœ¬å®Âæ–‡, 赤峰修ä¸Â€, 金澤誠司. 大æ°Â—åÂœ§ãƒ—ラズマジェットによる鉄鋼のå±Â€æ‰€çš„硬化æ³Â•ã®é–‹ç™º. 大分大学工学部ç Â”究報å‘Š å¹´å ±. 2014 Mar(61):6p.

大西靖彦. DEAE-デキストラン-MMA グラãĥトåÂ…±é‡åˆä½Â“をホストとして用い, ゲスト パクリタキセルと成る, è¶Â…分å­Âè¤Â‡åˆä½Â“ (DDMC/P TX) 開発および抗癌メカニズム ç Â”究â—‹ 大西靖彦, æ±ÂŸä¸Â‹å„ªæ¨¹ 2, ç´Â€ç‘žæˆ 3, å°Âæž—隆å¿Â— 2, 大西政康, 水野正明 4, 吉田ç´Â” 5, 石å·Âé›„ä¸Â€ 6, ä¹Â…ä¿Âç”°ç›´æ²» 7.

å†ÂÂ…æµ·æ–‡彰, 大äºÂ•çÂ…•人, 田沼靖ä¸Â€. DEAE-デキストランæ³Â•ã«ã‚ˆã‚‹å®Â‰価で再現性のよい遺ä¼Âå­Âå°ÂÂŽåÂÂ…¥æ³Â•. 生åÂŒ–学. 2014 Aug;86(4):532-7.

Onishi Y. Yuki Eshita, Rui-Cheng Ji, Masayasu Onishi, Takashi Kobayashi, Masaaki Mizuno, Jun Yoshida, Naoji Kubota &.

Onishi Y, Eshita Y, Ji RC, Kobayashi T, Onishi M, Mizuno M, Yoshida J, Kubota N. A robust control system for targeting melanoma by a supermolecular DDMC/paclitaxel complex. Integrative Biology. 2018; 24;10(9):549-554.

Yu SM, Choi YJ, Kim SJ. PEP-1-glutaredoxin-1 induces dedifferentiation of rabbit articular chondrocytes by the endoplasmic reticulum stress-dependent ERK-1/2 pathway and the endoplasmic reticulum stress-independent p38 kinase and PI-3 kinase pathways. International journal of biological macromolecules. 2018;1;111:1059-1066.