Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Nanomedicine & Nanotechnology

Yasuo Yoshioka

Yasuo Yoshioka
Graduate School of Pharmaceutical Sciences,
Osaka University 1-6, Yamadaoka, Suita, Osaka 565-0871
Japan

Publications
  • Research Article
    Neutrophilia Due to Silica Nanoparticles Induces Release of Double- Stranded DNA
    Author(s): Kazuma Higashisaka, Akiyoshi Kunieda, Yuki Iwahara, Kota Tanaka, Kazuya Nagano, Yohei Mukai, Haruhiko Kamada, Shin-ichi Tsunoda, Yasuo Yoshioka and Yasuo TsutsumiKazuma Higashisaka, Akiyoshi Kunieda, Yuki Iwahara, Kota Tanaka, Kazuya Nagano, Yohei Mukai, Haruhiko Kamada, Shin-ichi Tsunoda, Yasuo Yoshioka and Yasuo Tsutsumi

    Various types of nanomaterials have been developed for consumer and industrial applications, and the safety of such materials is the subject of considerable research around the world. Several studies have reported the inflammatory effects of nanomaterials, but the details of the involvement of neutrophils, the first leukocytes to be recruited to inflammation sites, in nanomaterial-induced inflammation are poorly understood. Here, we examined neutrophil activation in mice treated with silica particles. Twenty-four hours after treatment, the proportion of neutrophils in peripheral blood of mice injected with 70-nm-diameter silica nanoparticles (nSP70) was significantly higher than in saline-treated mice, whereas treatment with silica particles with diameters of 300 or 1000 nm did not result in any significant change in neutrophil proportion. In addition, hig.. View More»
    DOI: 10.4172/2157-7439.1000236

    Abstract PDF