Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Nanomedicine & Nanotechnology

Ugo Valbusa

Publications
  • Research Article
    Enhancing miRNAs Capture on Polydimethylsiloxane Surface with Nanostructuration
    Author(s): Patrizia Guida, Roberto Lo Savio, Cristina Potrich, Valentina Vaghi, Elena Angeli, Lia Vanzetti, Denise Pezzuoli, Laura Pasquardini, Giuseppe Firpo, Luca Repetto, Diego Repetto, Cecilia Pederzolli and Ugo ValbusaPatrizia Guida, Roberto Lo Savio, Cristina Potrich, Valentina Vaghi, Elena Angeli, Lia Vanzetti, Denise Pezzuoli, Laura Pasquardini, Giuseppe Firpo, Luca Repetto, Diego Repetto, Cecilia Pederzolli and Ugo Valbusa

    MicroRNAs (miRNAs) modulate gene expression at post-transcriptional level, while their aberrant presence in circulation correlates with the most common human disorders such as cancer, neuro-degenerative and immune-related diseases. Currently, the pre-concentration of such important bio-markers present at low concentrations in biological fluids, which would make their identification and quantification easier, remains a challenging issue for biosensor-based non-invasive analyses. This paper describes a new nanostructure-based polymeric platform for enhancing adsorption capability of microRNAs, such as the cancer-associated miRNA-21. In this purification strategy, a nano-hole pattern was manufactured by Replica Molding (REM) and fabricated on Polydimethylsiloxane (PDMS) large-areas. Interestingly, the microRNAs adsorption is resulted favoured by this proper topography. In planning to con.. View More»
    DOI: 10.4172/2157-7439.1000437

    Abstract PDF