Matteo Porotto
New York, New York 10032
Tanzania
Research Article
Self-assembly Stability Compromises the Efficacy of Tryptophan-Containing Designed Anti-measles Virus Peptides
Author(s): Diogo A. Mendonça, Tiago N. Figueira, Manuel N. Melo, Olivia Harder, Stefan Niewiesk, Anne Moscona, Matteo Porotto and Ana Salomé VeigaDiogo A. Mendonça, Tiago N. Figueira, Manuel N. Melo, Olivia Harder, Stefan Niewiesk, Anne Moscona, Matteo Porotto and Ana Salomé Veiga
The resurgence of several infectious diseases, like measles, has driven the search for new chemotherapeutics to prevent and treat viral infections. Self-assembling antiviral peptides are a promising class of entry inhibitors capable of meeting this need. Fusion inhibitory peptides derived from the heptad repeat of the C-terminal (HRC) of the measles fusion protein, dimerized and conjugated with lipophilic groups, were found to be efficacious against measles virus. The structures of the self-assembled nanoparticles formed by these peptides modulated their activity. Based on the analysis of a L454W mutation in the fusion protein of a naturally occurring measles viral isolate, HRC peptides bearing the tryptophan residue at position 454 (HRC-L454W) were synthesized with the goal of improving membrane anchoring and manipulating self-assembly. Monomeric and dimeric peptides, whether conjuga.. View More»
DOI:
10.35248/2157-7439.19.10.528