L.I.Privalova
Serbia
Research Article
Uptake of Some Metallic Nanoparticles by, and their Impact on
Pulmonary Macrophages in Vivo as Viewed by Optical, Atomic Force, and
Transmission Electron Microscopy
Author(s): B.A.Katsnelson, L.I.Privalova, M.P.Sutunkova, M.Ya.Khodos, V.Ya.Shur, E.V.Shishkina, L.G.Tulakina, S.V. Pichugova and J.B.BeikinB.A.Katsnelson, L.I.Privalova, M.P.Sutunkova, M.Ya.Khodos, V.Ya.Shur, E.V.Shishkina, L.G.Tulakina, S.V. Pichugova and J.B.Beikin
Optical microscopy (OM), semi-contact atomic force microscopy (sc-AFM), and transmission electron microscopy (TEM) were applied to examine cells in the broncho-alveolar lavage fluid (BALF) obtained from rats 24 hours after instillation of different metallic particles suspended in deionised water or of water without any particles. In a comparative experiment with iron oxide Fe 3 O 4 (magnetite) particles having a mean diameter of 10 nm, 50 nm or 1 μm, it was demonstrated that, given equal mass doses, nanoparticles (NPs) induce much more intensive recruitment of phagocytes with a much more significant shift toward neutrophil leukocytes (NL) count in the BALF cell population than micrometric particles do, this shift being an indirect but informative index of particle cytotoxicity for alveolar macrophages (AM). Judging by NL/AM ratio, this cytotoxicity dim.. View More»
DOI:
10.4172/2157-7439.1000129