A comprehensive review of the chemistry of water and ice has been given by Huang et al. [42]. In many ways, the behavior of the material is described as anomalous and the review attempts to deal with a number of the anomalies such as the influence of the H-O bond relaxation on melting point, the “supersolid skin” of ice that is responsible for slipperiness, and the bi-phase structure of nano-droplets and nano-ice. For instance, such water nano-droplets undergo significant melting point elevation and freezing point depression. It is well known that water has a relatively high surface free energy that plays an important role in nucleation of its phase transformation behavior. A much earlier description had been given by Turnbull and Vonnegut [43] of nucleation catalysis theory relating, for example, to a role for coherent nucleation of ice on silver iodide particles, a favorite material for “cloud seeding”. Armstrong and Glenn have proposed cloud seeding of the super-saturated storm clouds in order to prevent tornadogenesis [12]. The subject of nucleation has recently been reviewed by Sear [44], particularly including latest results on nucleation and growth of ice crystals. The subject of non-classical nucleation was given emphasis, particularly including latest results on special difficulty experienced with computer simulation of the process.
Olofsson and Hepler [45] had earlier established an enthalpy of reaction for ionization of aqueous H2 O of 55.815 kJ/mole and the National Institute of Standards and Technology (NIST) listing for gaseous ionization is ~1633 kJ/mole. Both energies seem relatively easy to be supplied at the temperatures of the order of ~30, 000 K achieved in a lightning discharge and consequent duration. An early report on ionization of water vapor by impact of slow electrons was given by Smyth and Mueller [46]. Bandura and lvov [47] have given a semi-theoretical analysis based on thermodynamics description of the ionization constant for liquid water that involves two molecules yielding H3O+ and OH-. Quite interestingly, the authors state that “Because the proton hydration is completed under all conditions of practical interest, we assume that this [two molecule] reaction may be used as a representative model for both liquid and vapor phases up to the zero density limit.” Naturally, the reported reaction rate constant was shown to increase strongly at lower density and higher temperature. The preceding results may be compared with the model simulation results obtained by Huthmacher et al. [48] of low energy electron dynamics (49], including mass spectroscopy measurements of charged water, ammonia and nitrous oxide molecules Vonnegut [2]. An earlier report preceding that of Huthmacher et al. was made of such synthesized ball lightning ‘fireballs’ generated by burning of silicon nanoparticles emitting electrons at 1000 K, not quite the higher temperature associated with a lightning strike [50]. At the top cloud height, there have been reported observations of ‘blue jets’, that are narrow cones of the colored light propagating upward at speeds of ~100 km/s, for example, as investigated in detail by Wescott et al. [51], and perhaps not unrelated to the occurrence of luminosity and blue light described within the core of a number of previously described tornado behaviors [2,38]. Wescott et al. reported a peak in IC stroke emissions at the time of occurrence of a strong updraft in wind velocity and significant ionization. Other description of ionization and dissociation of condensed molecules on IC ice-grain surfaces has been reported for high energy cosmic rays and simulated by bombardment of heavy ions [52]. Positive and negative ions ejected by impact from ice surfaces were analyzed by means of mass spectroscopy.