Abstract

The Potential Impact of Biofield Treatment on Physical, Structural and Mechanical Properties of Stainless Steel Powder

Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal and Snehasis Jana

Stainless steel (SS) has gained extensive attention due to its high corrosion resistance, low maintenance and familiar lustre and superior mechanical properties. In SS, the mechanical properties are closely related with crystal structure, crystallite size, and lattice strain. The aim of present study was to evaluate the effect of biofield treatment on structural, physical and mechanical properties of SS powder. SS (Grade-SUS316L) powder was divided into two parts denoted as control and treatment. The treatment part was received Trivedi’s biofield treatment. Control and treated SS samples were characterized using particle size analyzer, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. Result showed that biofield treatment has significantly reduced the particle size d10, d50, d90, and d99 (size, below which 10, 50, 90, and 99% particles were present, respectively) of SS powder up to 7.42, 12.93, 30.23, and 41.38% respectively, as compared to control. XRD result showed that the unit cell volume of SS was altered after biofield treatment. Moreover, crystallite size was significantly reduced upto 70% in treated SS as compared to control. The yield strength calculated using Hall-Petch equation, was significantly increased upto 216.5% in treated SS, as compared to control. This could be due to significant reduction of crystallite size in treated SS after biofield treatment. In FT-IR spectra, intensity of the absorption peak at wavenumber 1107 cm-1 (control) attributing to Fe-O-H bond was diminished in case of treated SS. These findings suggest that biofield treatment has substantially altered the structural, physical and mechanical properties of treated SS powder.