Abstract

The Effect of Plaque Removal on Pressure Drop and Flow Rate through an Idealized Stenotic Lesion

Brian D. Plourde, Lauren J. Vallez, Biyuan Sun, John P. Abraham and Cezar S. Staniloe

Numerical calculations have been performed to quantify the importance of plaque removal on blood flow. The artery under consideration is the popliteal artery which is susceptible to plaque lesions. An orbital artherectomy device was used to partially remove a calcified plaque layer. Measurements taken before and after the treatment were used in idealized calculations and pressure losses through the lesion were determined. It was found that the removal of plaque by orbital atherectomy increases the blood flowrate through the artery. At the same time, there is a major reduction of pressure loss through the lesion. After treatment, the systolic pressure drop was 2.5 times less than prior to treatment. The cycle-averaged pressure drop was improved by a factor of 3.5. The results are similar for a wide range of plaque lesion lengths (from 3 mm to 18 mm). A deeper investigation into the source of pressure loss reveals that the majority of the loss is confined to the entrance of the lesion and is caused by flow acceleration (and later deceleration) rather than by friction. The calculations were repeated with three increasingly complex numerical methods (steady laminar, unsteady laminar, and unsteady transitional). It was found that all methods were in good agreement so that more computationally expensive techniques are not required in order to obtain accurate results. The results of the simulation were compared with clinical pressure measurements before and after treatment. The two results were found to be in good agreement.