Amene Tesfaye and Libargachew Demlie
CYP3A4 accounts for about 30% in the human hepatic metabolism of xenobiotics. The defending mechanism of drug or xenobiotic metabolizing enzymes, particularly CYP superfamily has been found to be altered by both genetic polymorphisms and the environmental factors. The aim of this study was to examine UR-144 binding to CYP3A4 wild type and six different natural variants (I118V, R130Q, R162Q, D174H, T185S and L373F). A rigid ligand was docked by AutoDock Vina to flexible amino acid residues selected from the residues forming the binding pocket. The analysis of the docking results showed there is no difference in the binding affinities between the wild type and the natural variants. However, comparing the absolute binding affinity, the wild type (-12.8kcal/mol) has shown, among all, the lowest binding energy. Thus, this study depicts that the SNPs of CYP3A4 do not have any effects on the binding affinity of UR-144 to the active site.