Abstract

Holistic Approach to Axonal Regeneration in Cases of Spinal Cord Injury

Da-Chuan Yeh

Spinal Cord Injuries (SCIs) that result from trauma can cause the death of nerve cells and lead to distal neuronal death. The hostility of the lesion microenvironment imposes multiple conditions that must be met to achieve functional recovery. Considerable research indicated interactions and signaling, such as supporting cells, extracellular matrix, neurotrophic factors and biodegradable polymers for axonal regeneration. In recent years, researchers have been seeking novel biomaterials that are capable of stimulating cellular regeneration and promoting functional recovery. The ability of various biomaterials to create bridging structures and facilitate axonal growth has also been investigated. In this manuscript, we outline the progress researchers have made in developing holistic approaches to axonal regeneration in cases of spinal cord injury. We report on a number of therapeutic methods that could be used to promote neurological recovery and examine their clinical applicability. We also share a number of recent insights that have enhanced the feasibility of multiple channel bridges in the treatment of SCI.