Abstract

Heat and Mass Transfer for Hartmann and Dufour’s Effects on Irreversibilities at Double-Diffusive Natural Convection in a Square Cavity

Mounir Bouabid, Nejib Hidouri, Mourad Magherbi and Ammar Ben Brahim

In this paper, entropy generation of double-diffusive natural convection in a 2D dimensional enclosure with magnetic and Dufour effects has been numerically performed. Dirichlet boundary conditions for temperature and solute concentration are applied to the two vertical walls of the enclosure; wheras the two horizontal walls are adiabatic and insulated. The governing equations of continuity, momentum, energy and concentration are numerically solved by using a Control Volume Fined Elements Method, CVFEM of Patankar. The governing parameters of the problem are the thermal Grashof number (GrT), the buoyancy ratio (N), the Hartmann number (Ha), the Dufour parameter (Du) and the Prandtl number (Pr). The obtained results were presented graphically via the velocity field components, temperature and concentration distributions, entropy genertion rate behaviour and by isotherms, streamlines and isentropic lines maps. The average Nusselt and Sherwood numbers are also derived and discussed numerically. The investigated results showed that the flow field and then entropy generation are notably influenced by the considering parameters.