Abstract

Fibroblast Cell Cultivation on Wooden Pulp Cellulose Hydrogels for Cytocompatibility Scaffold Method

Takaomi Kobayashi and Karla L Tovar-Carrillo

Fibroblast cell cultivation method was evaluated by using natural polymers sourced from pulp cellulose in their hydrogel forms. The pulp sourced was offered as an alternative for the preparation of hydrogel films when the cellulose was dissolved in dimethylacetamide/lithium choride (DMAc/LiCl) solution and converted hydrogels having flexible and transparent properties. The cultivation of the fibroblast cells was investigated on the hydrogels obtained in different LiCl concentration in the range of 4 to 12 wt%. Regarding the cytocompatibility, when NIH 3T3 fibroblast cells were used for cell adhesion assays, the growing cells showed higher density and aspect ratio on the hydrogel films than the observed on the commercial polystyrene dish (PS dish) used for cell cultivation. The mechanical and surface tests showed that the hydrogel films had elongation around 20 and 40 %, tensile strength from 48 to 67 N/mm2, and high water content value from 200 to 320 %. The results showed that cell addition and spreading on the hydrogel was higher compared with that in the PS dish used as control. Moreover, according with cell morphology tests, the values of cell area, long axis, and aspect ratio were higher than the registered on PS dish. These exhibited that the cellulose hydrogel films prepared with wooden pulp provided good cytocompatibility for its application in tissue engineering.