Abstract

Effect of Blade Angle on Cavitation Phenomenon in Axial Pump

Nabil H. Mostafa and Mohamed Adel

The objective of this paper is to present 3-D numerical and experimental study of the effect of blade angle on the cavitation phenomenon. The numerical computation in cavitating flow carried out using the Navier-Stokes code (CFD-ACE+ 2008) is presented. The governing equations are discretized on a structured grid using an upwind difference scheme. The numerical simulation used the standard K-ε turbulence model to account for the turbulence effect. Pressure distribution and vapor volume fraction were obtained numerically at variable blade angles. Also the performance curve of the axial pump was obtained at variable blade angles 10°, 20° and 30°. The numerical and experimental results showed that the cavitation phenomenon appeared at blade angle 30° only. The computational code has been validated by comparing the predicted numerical results with the experimental ones. Besides, the predicted void growth and cavitation distribution on the impeller blade agreed with those visualized with high speed camera.