Abstract

Development of Novel Bacteriostatic Agents against Mycobacterium tuberculosis Using In silico Techniques

Anupama Pandrangi

The cell wall of Mycobacterium tuberculosis is made up of mycolic acids which are found to play important role in pathogenesity by modification of double bonds at specific sites on mycolic acid precursors by the action of cyclopropane mycolic acid synthases (CMASs) that belong to a family of S-adenosyl-methionine-dependent methyl transferases. PcaA is an cyclopropane mycolic acid synthase required for cording, persistence and virulence of Mycobacterium tuberculosis and modifies mycolic acid by cyclopropanation of proximal double bond to cis cyclopropane generating alpha mycolic acid. A molecular docking of selected compounds was performed and the differences in their binding modes were investigated in order to design novel lead compound that can act as better antitubercular agent targeting cyclopropane mycolic acid synthases.