Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Journal of Bioequivalence & Bioavailability

Abstract

Alpha-D-Galactosidase does not Interfere with Trimebutine Oral Pharmacokinetics in Mexican Healthy Volunteers

Peñaloza-Becerra CA, Ortega-Escamilla E, Vásquez JEV, Marcelín-Jiménez G, Ángeles AP, García-González A, Leyte JL, Koretzky SG, Batista-Dieguéz D and López-Sánchez P

Gas production is a common symptom in bowel affections. There are different formulations to improve general symptoms, including motility regulators, such as trimebutine, and surfactants, such as simethicone, or both. These approaches, however, do not affect gas production. Methane, hydrogen, carbon dioxide, and water are generated in the intestines due to action of bacterial flora on non-digestible carbohydrates from the diet. The unfolding of these carbohydrates by specific enzymes promises greater improvement of symptomatology. Alpha-D-Galactosidase degrades these carbohydrates from diet. It is not known whether the addition of this enzyme modifies trimebutine pharmacokinetics. Thus, our aim was to assess whether the addition of Alpha-D-Galactosidase to a commercial formulation alters trimebutine oral pharmacokinetics. We conducted a controlled, cross-over, randomized, simpleblind, two-period, two-treatment, and two-sequence clinical trial on 30 healthy Mexican volunteers, receiving a single dose of reference product and test product. Pharmacokinetics and safety of usage were obtained. We measured N-desmethyl-trimebutine, the major metabolite of trimebutine. We showed that addition of galactosidase does not modify any pharmacokinetic parameter significantly. Safety of the subjects was not affected. We conclude that alpha-D-Galactosidase does not modify oral pharmacokinetics of trimebutine, rendering this approach suitable for commercial use in indicated bowel affections.